Bài 13. Trong không gian \(Oxyz\), cho hai đường thẳng:
d1:\(\left\{ \matrix{
x = - 1 + 3t \hfill \cr
y = 1 + 2t \hfill \cr
z = 3 - 2t \hfill \cr} \right.\) và d2 :\(\left\{ \matrix{
x = k \hfill \cr
y = 1 + k \hfill \cr
z = - 3 + 2k. \hfill \cr} \right.\)
a) Chứng minh rằng d1 và d2 cùng thuộc một mặt phẳng.
b) Viết phương trình mặt phẳng đó.
Giải
a) Đường thẳng d1 đi qua điểm \(M_1(-1; 1; 3)\) và có vectơ chỉ phương \(\overrightarrow = (3;2; - 2)\); đường thẳng d2 đi qua điểm \(M_2\)\((0; 1; -3)\) và có vectơ chỉ phương \(\overrightarrow = (1; 1; 2)\).
Ta có \(\left[ {\overrightarrow , \overrightarrow } \right]= (6; -8; 1)\), \(\overrightarrow {{M_1}{M_2}} = (1; 0; -6)\) và \(\left[ {\overrightarrow , \overrightarrow } \right]\). \(\overrightarrow {{M_1}{M_2}} = 0\)
nên ba vectơ \(\overrightarrow , \overrightarrow , \overrightarrow {{M_1}{M_2}} \) đồng phẳng.
Vậy hai đường thẳng d1, d2 nằm cùng một mặt phẳng.
b) Gọi \((P)\) là mặt phẳng chứa d1 và d2.
Khi đó \((P)\) qua điểm \(M_1 (-1; 1; 3)\) và có vectơ pháp tuyến
\(\overrightarrow n = \left[ {\overrightarrow , \overrightarrow } \right]= (6; -8; 1)\).
Phương trình mặt phẳng \((P)\) có dạng:
\(6(x + 1) - 8(y - 1) + (z - 3) = 0\)
hay \(6x - 8y + z + 11 = 0\)