Bài tập  /  Bài đang cần trả lời

Bài 30 trang 79 sgk Toán lớp 9 tập 2

1 Xem trả lời
Hỏi chi tiết
796
0
1
Phạm Văn Phú
12/12/2017 02:04:26
Bài 30. Chứng minh định lí đảo của định lí về góc tạo bởi tia tiếp tuyến và dây cung, cụ thể là:
Nếu \(\widehat{ BAx}\) (với đỉnh \(A\) nằm trên một đường tròn, một cạnh chứa dây cung \(AB\)), có số đo bằng nửa số đo của \overparen{AB} căng dây đó và cung này nằm bên trong góc đó thì cạnh \(Ax\) là một tia tiếp tuyến của đường tròn (h.29).

Hướng dẫn giải:
Cách 1( hình a). Chứng minh trực tiếp

Theo giả thiết,
Suy ra: \(\widehat {BAx} = \widehat \)
Hai góc nhọn này đã có một cặp cạnh vuông góc với nhau ( \(OC \bot AB\) ).
Vậy cặp cạnh kia cũng phải vuông góc, tức là \(OA \bot Ax\). 
Vậy \(Ax\) phải là tiếp tuyến của \((O)\) tại \(A\)
Cách 2 (hình b) Chứng minh bằng phản chứng.

Nếu cạnh kia không phải là tiếp tuyến tại \(A\) mà là cát tuyến đi qua \(A\) và giả sử nó cắt \((O)\) tại \(C\) thì \(\widehat {BAC} \) là góc nội tiếp 
Điều này trái với giả thiết. Vậy cạnh kia không thể là cát tuyến, mà phải là tiếp tuyến \(Ax\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×