Bài 4. Cho tổng \({S_n} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {n(n + 1)}}\) với \(n\in {\mathbb N}^*\).
a) Tính \({S_1},{S_2},{S_3}\)
b) Dự đoán công thức tính tổng \(S_n\) và chứng minh bằng quy nạp.
Hướng dẫn giải:
a) Ta có:
\(\eqalign{
& {S_1} = {1 \over {1.2}} = {1 \over 2} \cr
& {S_2} = {1 \over {1.2}} + {1 \over {2.3}} = {2 \over 3} \cr
& {S_3} = {1 \over {1.2}} + {1 \over {2.3}} + {1 \over {3.4}} = {3 \over 4} \cr} \)
b) Từ câu a) ta dự đoán \({S_n} = {n \over {n + 1}}(1)\), với mọi \(n\in {\mathbb N}^*\)
Ta sẽ chứng minh đẳng thức (1) bằng phương pháp quy nạp
Khi \(n = 1\), vế trái là \({S_1} = {1 \over 2}\) vế phải bằng \({1 \over {1 + 1}} = {1 \over 2}\). Vậy đẳng thức (1) đúng.
Giả sử đẳng thức (1) đúng với \(n\ge 1\), tức là
\({S_k} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {k(k + 1)}} = {k \over {k + 1}}\)
Ta phải chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là phải chứng minh
\({S_{k + 1}} = \)
Ta có : \({S_{k + 1}} = {S_k} + {1 \over {(k + 1)(k + 2)}} = {k \over {k + 1}} + {1 \over {(k + 1)(k + 2)}}\)
\( = {{{k^2} + 2k + 1} \over {(k + 1)(k + 2)}} = \)
tức là đẳng thức (1) đúng với \(n = k + 1\).
Vậy đẳng thức (1) đã được chứng minh.