Bài tập  /  Bài đang cần trả lời

Chứng minh rằng tam giác ABC vẽ trên giấy kẻ ô vuông (hình 62) là tam giác nhọn

5 Xem trả lời
Hỏi chi tiết
4.501
7
4
Mr_Cu
22/01/2017 10:42:24
- Giả sử độ dài mỗi ô vuông nhỏ là 1
- Đường chéo mỗi ô vuông là Căn 2.
- Độ dài các cạnh AB, AC, BC lần lượt là: ( căn 13) , 3 căn 2, 5
- Ta thấy 3 cạnh không bằng nhau nên không phải tam giác đều.
- Thử định lý pytago đảo không đúng nên không phải tam giác vuông.
- So sánh tỉ lện giữ cách cạnh đều nhỏ hơn 2. Nên trong tam giác không có góc tù. Vậy tam giác là tam giác nhọn

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
14
6
.......
22/01/2017 17:01:04
1
3
hahaha
03/02/2017 12:23:06
0
3
NoName.11358
24/02/2017 23:09:49
Cách 1:
ΔAHB = ΔCKA (c.g.c)
⇒AB = CA, ∠BAH = ∠ACK
Ta lại có ∠ACK + ∠CAK = 900
nên ∠BAH + ∠CAK = 900
Do đó ∠BAC = 900
Vậy ΔABC là tam giác vuông cân tại A.
Cách 2:
Gọi độ dài của mỗi cạnh ô vuông là 1. Theo đinhj lý pitago:
AB2 = 22 +32 =4 +9 =13
AC2= 22+ 32 =4 +9 =13
BC2 =12 +52 =1 +15 =26
Do BC2 = AB2 +AC2
nên ∠BAC = 900 (Đl pitago đảo)
Do AB2 = AC2 nên AB = AC. Vậy ΔABC là tam giác vuông cân.
0
2
ngọc xinh
24/02/2017 23:13:19
Cách 1:
ΔAHB = ΔCKA (c.g.c)
⇒AB = CA, ∠BAH = ∠ACK
Ta lại có ∠ACK + ∠CAK = 900
nên ∠BAH + ∠CAK = 900
Do đó ∠BAC = 900
Vậy ΔABC là tam giác vuông cân tại A.
Cách 2:
Gọi độ dài của mỗi cạnh ô vuông là 1. Theo đinhj lý pitago:
AB2 = 22 +32 =4 +9 =13
AC2= 22+ 32 =4 +9 =13
BC2 =12 +52 =1 +15 =26
Do BC2 = AB2 +AC2
nên ∠BAC = 900 (Đl pitago đảo)
Do AB2 = AC2 nên AB = AC. Vậy ΔABC là tam giác vuông cân.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×