Bài tập  /  Bài đang cần trả lời

Lý thuyết hàm số y = ax + b

1 Xem trả lời
Hỏi chi tiết
417
0
0
Nguyễn Thu Hiền
12/12/2017 00:13:59
1. Định nghĩa
    Hàm số bậc nhất là hàm số có công thức: \(y = ax + b\) trong đó \(a\) và \(b\) là các số đã cho với \(a ≠ 0, x\) là biến số.
2. Sự biến thiên
    Hàm số bậc nhất \(y = ax + b (a ≠ 0)\) có tập xác định \(D =\mathbb R\), đồng biến trên \(\mathbb R\) nếu \(a > 0\) và nghịch biến trên \(\mathbb R\) nếu \(a < 0\).
    Bảng biến thiên của hàm số bậc nhất tùy theo \(a\) như sau:
 
3. Đồ thị 
Đồ thị hàm số \(y = ax + b (a ≠ 0)\) là một đường thẳng không song song cũng không trùng với các trục tọa độ, cắt trục tung tại điểm \(P(0; b)\) và cắt trục hoành tại điểm \(Q = \left( { - {b \over a};0} \right)\)
 
Ta gọi đồ thị của hàm số \(y = ax + b\) là đường thẳng \(ax + b\). Số \(a\) gọi là hệ số góc của đường thẳng \(y = ax + b\).
4. Hàm số hằng \(y = b\)
Khi \(a = 0\) hàm số \(y = ax + b\) trở thành hàm hằng \(y = b\) là đường thẳng song song với trục hoành cắt trục tung tại điểm \(P(0; b)\). Ta gọi đường thẳng này là đường thẳng \(y = b\). 

5. Hàm số \(y = |x|\)           
\(y = |x| = \left\{ \matrix{
x,\text { nếu }x \ge 0 \hfill \cr
- x,\text { nếu }x < 0 \hfill \cr} \right.\)
có tập xác định \(D =\mathbb R\), đồng biến trên khoảng \((0; +∞)\) và nghịch biến trên khoảng \((- ∞; 0)\). 
Đồ thị là đường thẳng; trên nửa khoảng \([0; +∞)\) trùng với đồ thị hàm số \(y = x\) và trên khoảng \((- ∞; 0)\) trùng với đồ thị hàm số \(y = - x\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×