Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1\]. Vectơ nào dưới đây là vectơ pháp tuyến của \[\left( P \right)?\]
CenaZero♡ | Chat Online | |
05/09 16:47:57 (Toán học - Lớp 12) |
6 lượt xem
Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1\]. Vectơ nào dưới đây là vectơ pháp tuyến của \[\left( P \right)?\]
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[\vec n = \left( {6;3;2} \right).\] 0 % | 0 phiếu |
B. \[\vec n = \left( {2;3;6} \right).\] 0 % | 0 phiếu |
C. \[\vec n = \left( {1;\frac{1}{2};\frac{1}{3}} \right).\] 0 % | 0 phiếu |
D. \[\vec n = \left( {3;2;1} \right).\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Một hộp chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng một quả cầu màu đỏ và không quá hai quả cầu màu vàng. (Toán học - Lớp 12)
- Cho hàm số f(x), \[y = f\left[ {f\left( {2x - 3} \right)} \right]\] và \[y = f\left( {{x^3} + x + 2} \right)\] lần lượt có các đồ thị \[{C_1},{C_2},{C_3}.\] Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của \[{C_1}\] là \[y = x + 3\], phương ... (Toán học - Lớp 12)
- Cho hình lăng trụ đứng \[{\mkern 1mu} ABCD.A'B'C'D'\] có đáy là hình thoi có cạnh \[4a\], \[A'A = 8a\], \[\widehat {BAD} = {120^{0.}}\]. Gọi \[M,N,K\] lần lượt là trung điểm cạnh \[AB',B'C,BD'\]. Thể tích khối da diện lồi có các ... (Toán học - Lớp 12)
- Cho hàm số đa thức bậc ba \[y = f\left( x \right)\] có đồ thị như hình bên. Tìm tất cả các giá trị của tham số m để hàm số \[y = \left| {f\left( x \right) + m} \right|\] có ba điểm cực trị. (Toán học - Lớp 12)
- Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( \right)\] có tâm \[{I_1}\left( {1;0;1} \right),\;\] bán kính \[{R_1} = 2\] và mặt cầu \[\left( \right)\] có tâm \[{I_2}\left( {1;3;5} \right),\] bán kính \[{R_2} = 1.\] Đường thẳng d ... (Toán học - Lớp 12)
- Cho các số thực \[a,b > 1\] và phương trình \[{\log _a}\left( {ax} \right).{\log _b}\left( {bx} \right) = 2020\] có hai nghiệm phân biệt m và n. Tìm giá trị nhỏ nhất của biểu thức \[P = \left( {4{a^2} + 9{b^2}} \right)\left( {36{m^2}{n^2} + 1} ... (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] liên tục trên tập số thực và có đồ thị như hình vẽ. Biết \[f\left( { - 1} \right) = \frac{4},f\left( 2 \right) = 6\]. Tổng giá trị lớn ... (Toán học - Lớp 12)
- Cho hàm số f(x) có đạo hàm xác định, liên tục \[\left[ {0;1} \right]\] đồng thời thỏa mãn các điều kiện \[f'\left( 0 \right) = - 1\] và \[{\left[ {f'\left( x \right)} \right]^2} = f''\left( x \right)\]. Đặt \[T = f\left( 1 \right) - f\left( 0 ... (Toán học - Lớp 12)
- Biết phương trình \[{x^4} + a{x^3} + b{x^2} + cx + d = 0,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (a,b,c,d \in \mathbb{R})\] nhận \[{z_1} = - 1 + i,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {z_2} = 1 + i\sqrt 2 \] là nghiệm. Tính \[a + b + c + d.\] (Toán học - Lớp 12)
- Cho mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} \right)x + \left( {2 - m} \right)y + 2\left( {m + 1} \right)z - 6\left( {m + 2} \right) = 0.\] Biết rằng khi m thay đổi, mặt cầu (S) luôn chứa một đường tròn cố định. Tọa độ tâm I ... (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)