Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):2x - y + z - 6 = 0\] và đường thẳng \[d:\frac{2} = \frac{1} = \frac{{ - 1}}.\] Viết phương trình đường thẳng Δ cắt mặt phẳng (P) và đường thẳng d lần lượt tại M và N sao cho \[A\left( {3;5;2} \right)\] là trung điểm của cạnh MN.
Tô Hương Liên | Chat Online | |
05/09 19:38:37 (Toán học - Lớp 12) |
8 lượt xem
Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):2x - y + z - 6 = 0\] và đường thẳng \[d:\frac{2} = \frac{1} = \frac{{ - 1}}.\] Viết phương trình đường thẳng Δ cắt mặt phẳng (P) và đường thẳng d lần lượt tại M và N sao cho \[A\left( {3;5;2} \right)\] là trung điểm của cạnh MN.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[\Delta :\frac{x}{3} = \frac{3} = \frac{z}{2}.\] 0 % | 0 phiếu |
B. \[\Delta :\frac{1} = \frac{2} = \frac{3}.\] 0 % | 0 phiếu |
C. \[\Delta :\frac{9} = \frac{6} = \frac{{ - 1}}.\] 0 % | 0 phiếu |
D. \[\Delta :\frac{{ - 1}} = \frac{1} = \frac{4}.\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình chóp S.ABCDcó đáy ABCDlà hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\]. Góc giữa đường thẳng SC và mặt phẳng \[\left( {ABCD} \right)\] bằng \[45^\circ \]. Khoảng cách giữa hai đường thẳng \[SB\] và \[AC\] ... (Toán học - Lớp 12)
- Biết rằng \[\int\limits_1^2 {x{{\left( {x - 1} \right)}^n}dx} = \frac,\] với \[n \in {\mathbb{N}^*}.\] Mệnh đề nào dưới đây là đúng? (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Tam giác SABvuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Côsin của góc giữa mặt phẳng (SCD) và (ABCD) bằng (Toán học - Lớp 12)
- Tập nghiệm của phương trình \[\frac{1}{2}{\log _{\sqrt 3 }}\left( {2x + 1} \right) + {\log _3}\left( {x - 3} \right) = 2\] là (Toán học - Lớp 12)
- Trong không gian, cho hình trụ (T) có chiều cao bằng 8cm. Mặt phẳng (α) song song với trục của (T), cắt (T) theo thiết diện (D) là một hình vuông. Khoảng cách từ trục của (T) đến mặt phẳng chứa (D) bằng 3cm. Tính thể tích của khối trụ đã cho. (Toán học - Lớp 12)
- Cho hàm số \[y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx + 1\] (m là tham số thực) có hai điểm cực trị \[{x_1},{\rm{ }}{x_2}\] thỏa mãn \[x_1^2 + x_2^2 = 2.\] Mệnh đề nào dưới đây là đúng? (Toán học - Lớp 12)
- Trong không gian Oxyz,cho hai đường thẳng \[d:\frac{1} = \frac{2} = \frac{1}\] và \[d':\frac{4} = \frac{2} = \frac{1}.\] Biết rằng d cắt \[d'\] tại \[A\left( {a;b;c} \right).\] Tính \[S = a + b + ... (Toán học - Lớp 12)
- Một đội xây dựng gồm 10 công nhân và 3 kĩ sư. Có bao nhiêu cách chọn 1 kĩ sư làm tổ trưởng, 1 công nhân làm tổ phó và 5 công nhân làm tổ viên để lập một tổ công tác? (Toán học - Lớp 12)
- Cho lăng trụ đứng \[ABCD.A'B'C'D'\] có đáy ABCDlà hình chữ nhật với \[AB = 2a,{\rm{ }}AC = 2a\sqrt 3 .\] Góc giữa đường thẳng \[AC'\] và mặt phẳng \[\left( {ABCD} \right)\] bằng \[30^\circ .\] Thể tích của khối lăng trụ \[ABCD.A'B'C'D'\] bằng (Toán học - Lớp 12)
- Cho hàm số \[f\left( x \right) = \frac{{{2^x}}}{{{2^x} + 2}}\]. Tính tổng \[f\left( 0 \right) + f\left( {\frac{1}} \right) + ... + f\left( {\frac} \right)\]. (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)