Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét đường tròn (O) đường kính AB có \(\widehat{ANB}=\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn) => AM ⊥ MB; BN ⊥ AN hay AM ⊥ BC; BC ⊥ AC
Xét ΔABC có 2 đường cao AM, BN cắt nhau tại H => H là trực tâm ΔABC => CH ⊥ AB. Mà HK ⊥ AB (gt) => CH ≡ HK hay C, H, K thẳng hàng
b) Gọi giao điểm của NK với đường tròn (O) là D
ΔCNM ~ ΔCBA (c.g.c) => \(\widehat{CNM}=\widehat{ABC}\) (2 góc tương ứng)
ΔANK ~ ΔABC (c.g.c) => \(\widehat{ANK}=\widehat{ABC}\) (2 góc tương ứng)
=> \(\widehat{CNM}=\widehat{ANK}\) => \(90^o-\widehat{CNM}=90^o-\widehat{ANK}\) => \(\widehat{BNM}=\widehat{BND}\)
Xét đường tròn (O) có \(\widehat{BNM}=\widehat{BND}\) => \(\stackrel\frown{BM}=\stackrel\frown{BD}\) => B là điểm chính giữa cung MD
Do B, M cố định => D cố định => NK luôn đi qua điểm D cố định
c) Xét tứ giác HKBM có \(\widehat{HKB}=\widehat{HMB}=90^o\) => Tứ giác HKBM nội tiếp
=> AH.AM = AK.AB
Tương tự ta có BH.BN = BK.AB
=> AH.AM + BH.BN = AK.AB + BK.AB = AB(AK + BK) = AB2
Do AB không đổi nên AH.AM + BH.BN không đổi
d) CMTT câu b ta có \(\widehat{NMH}=\widehat{IMH}\) => MH là phân giác trong tại M của tam giác MNI
=> \(\dfrac{IH}{NH}=\dfrac{IM}{MN}\) (tính chất đường phân giác)
AM ⊥ MB (cmt) => MB là phân giác ngoài tại M của tam giác MNI
=> \(\dfrac{BI}{BN}=\dfrac{IM}{MN}\) (tính chất đường phân giác)
=> \(\dfrac{IH}{NH}=\dfrac{IB}{BN}\left(=\dfrac{IM}{MN}\right)\) => IH.BN = NH.IB
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |