Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
vì một số chia hết cho 7 sẽ có số dư là 0, 1, 2, 3, 4, 5, 6. vậy trong 8 số tự nhiên bất kì sẽ có 2 số có cùng số dư khi chia cho 7
giả sử \(\overline{abc}\)và \(\overline{xyz}\) là hai số có 3 chữ số có cùng số dư khi chia cho 7,không mất tính tổng quát ta giả sử số dư đó là m với m thuộc từ 0 đến 6
khi đó: \(\overline{abc}\)=7k+mabc¯=7k+m và \(\overline{xyz}\)=7q+m
cần chứng minh: \(\overline{abcxyz}\)chia hết cho 7
thật vậy: ta có \(\overline{abcxyz}\)=\(\overline{abc}.100+\overline{xyz}=\left(7k+m\right)=7000k+7q+1001m\)
nhận xét: 7000k, 7q , 1001m đều chia hết cho 7 nên suy ra \(\overline{abcxyz}\)chia hết cho 7
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |