Bài tập  /  Bài đang cần trả lời

Cho tám số tự nhiên có ba chữ số. Chứng minh rằng trong tám số đó, khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7


Cho tám số tự nhiên có ba chữ số. Chứng minh rằng trong tám số đó, khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7.
3 Xem trả lời
Hỏi chi tiết
60
2
0
Kim Mai
18/08/2022 15:03:56
+5đ tặng

vì một số chia hết cho 7 sẽ có số dư là 0, 1, 2, 3, 4, 5, 6. vậy trong 8 số tự nhiên bất kì sẽ có 2 số có cùng số dư khi chia cho 7

giả sử \(\overline{abc}\)và \(\overline{xyz}\) là hai số có 3 chữ số có cùng số dư khi chia cho 7,không mất tính tổng quát ta giả sử số dư đó là m với m thuộc từ 0 đến 6

khi đó: \(\overline{abc}\)=7k+mabc¯=7k+m  và \(\overline{xyz}\)=7q+m

cần chứng minh: \(\overline{abcxyz}\)chia hết cho 7

thật vậy: ta có \(\overline{abcxyz}\)=\(\overline{abc}.100+\overline{xyz}=\left(7k+m\right)=7000k+7q+1001m\)

nhận xét: 7000k, 7q , 1001m đều chia hết cho 7 nên suy ra \(\overline{abcxyz}\)chia hết cho 7

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
Ng Nhật Linhh
18/08/2022 15:04:18
+4đ tặng
2
0
Hồng Anh
18/08/2022 15:05:18
+3đ tặng

Khi chia 8 số tự nhiên cho 7 thì mỗi số sẽ nhận 1 giá trị dư thuộc {1; 2; 3; 4; 5; 6}

Như vậy sẽ có 2 số khi chia có 7 có cùng số dư. Giả sử có 2 số A>B khi chia cho 7 có cùng số dư là a ta có

A=7m+a; B=7n+a => A-B = 7(m-n) chia hết cho 7

=> Trong 8 số có 3 chữ số, giả sử abc > def có cùng số dư => abc - def  chia hết cho 7 theo cm ở trên. Khi viết liền nhau

abcdef = 1000.abc + def = 1001.abc - abc + def = 1001.abc - (abc - def)

=> 1001 chia hết cho 7 và abc - def chia hết cho 7 => abcdef chia hết cho 7 (dpcm)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×