Cho a+b+c=1. Chứng minh: 1/a^2+b^2+c^2 + 1/a^2 + 1/b^2 + 1/c^2 >= 30 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve this problem, we can use the Cauchy-Schwarz inequality. By Cauchy-Schwarz inequality, we have: (a^2 + b^2 + c^2)(1/a^2 + 1/b^2 + 1/c^2) ≥ (1 + 1 + 1)^2 Simplifying, we get: (1/a^2 + 1/b^2 + 1/c^2) ≥ 9 Now, we need to find the minimum value of (1/a^2 + 1/b^2 + 1/c^2). Using AM-HM inequality, we have: (a^2 + b^2 + c^2)/3 ≥ 3/(1/a^2 + 1/b^2 + 1/c^2) Simplifying, we get: (1/a^2 + 1/b^2 + 1/c^2) ≥ 9/(a^2 + b^2 + c^2) Now, substituting the given condition a + b + c = 1, we have: (1/a^2 + 1/b^2 + 1/c^2) ≥ 9/(1 - 2ab - 2bc - 2ca) Since a + b + c = 1, we can rewrite the denominator as: (1 - 2ab - 2bc - 2ca) = (a + b + c)^2 - 2(ab + bc + ca) = 1 - 2(ab + bc + ca) Therefore, we have: (1/a^2 + 1/b^2 + 1/c^2) ≥ 9/(1 - 2(ab + bc + ca)) To find the minimum value of (1/a^2 + 1/b^2 + 1/c^2), we need to find the maximum value of (ab + bc + ca). By AM-GM inequality, we have: ab + bc + ca ≤ (a^2 + b^2 + c^2)/2 Substituting the given condition a + b + c = 1, we have: ab + bc + ca ≤ (1 - a^2 - b^2 - c^2)/2 Since a^2 + b^2 + c^2 ≥ ab + bc + ca, we can rewrite the inequality as: ab + bc + ca ≤ (1 - (ab + bc + ca))/2 Simplifying, we get: 3(ab + bc + ca) ≤ 1 Therefore, we have: (1/a^2 + 1/b^2 + 1/c^2) ≥ 9/(1 - 2(ab + bc + ca)) ≥ 9/(1 - 2/3) = 27 Hence, the minimum value of (1/a^2 + 1/b^2 + 1/c^2) is 27. Therefore, we have: 1/a^2 + b^2 + c^2 + 1/a^2 + 1/b^2 + 1/c^2 ≥ 30 This inequality is satisfied when (1/a^2 + 1/b^2 + 1/c^2) = 27. Hence, the given inequality is true.