(x ^ 2 + xy + y ^ 2)/(x ^ 3 + 3xy * (x + y) ^ 2 + y ^ 3) / ((x - y)/(x ^ 2 + xy + y ^ 2) - (x + y)/(x - y))
0 Xem trả lời
27 Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the given expression, let's break it down step by step: 1. Simplify the numerator: (x^2 + xy + y^2) 2. Simplify the denominator: (x^3 + 3xy * (x + y)^2 + y^3) 3. Simplify the expression inside the first set of parentheses: (x - y) 4. Simplify the expression inside the second set of parentheses: (x^2 + xy + y^2) 5. Simplify the expression inside the third set of parentheses: (x - y) Now, let's simplify the entire expression: (x^2 + xy + y^2) / (x^3 + 3xy * (x + y)^2 + y^3) / ((x - y) / (x^2 + xy + y^2) - (x + y) / (x - y)) = (x^2 + xy + y^2) / (x^3 + 3xy * (x + y)^2 + y^3) * ((x - y) / (x^2 + xy + y^2) - (x + y) / (x - y)) = (x^2 + xy + y^2) * (x - y) / (x^3 + 3xy * (x + y)^2 + y^3) * (x - y) / (x^2 + xy + y^2) - (x + y) / (x - y) = (x^2 + xy + y^2) * (x - y)^2 / (x^3 + 3xy * (x + y)^2 + y^3) * (x^2 + xy + y^2) - (x + y) / (x - y) = (x^2 + xy + y^2) * (x - y)^2 / (x^3 + 3xy * (x + y)^2 + y^3) * (x^2 + xy + y^2) - (x + y) * (x - y) / (x - y) = (x^2 + xy + y^2) * (x - y)^2 / (x^3 + 3xy * (x + y)^2 + y^3) * (x^2 + xy + y^2) - (x^2 - y^2) / (x - y) = (x^2 + xy + y^2) * (x - y)^2 / (x^3 + 3xy * (x + y)^2 + y^3) * (x^2 + xy + y^2) - (x^2 - y^2) * (x - y) / (x - y) = (x^2 + xy + y^2) * (x - y)^2 / (x^3 + 3xy * (x + y)^2 + y^3) * (x^2 + xy + y^2) - (x^3 - xy^2 - x^2y + y^3) / (x - y) = (x^2 + xy + y^2) * (x - y)^2 / (x^3 + 3xy * (x + y)^2 + y^3) * (x^2 + xy + y^2) - (x^3 - xy^2 - x^2y + y^3) / (x - y) = (x^2 + xy + y^2)^2 * (x - y)^2 - (x^3 - xy^2 - x^2y + y^3) / (x^3 + 3xy * (x + y)^2 + y^3) = (x^4 + 2x^3y + x^2y^2 + 2x^3y - 2xy^3 + y^4) - (x^3 - xy^2 - x^2y + y^3) / (x^3 + 3xy * (x + y)^2 + y^3) = x^4 + 4x^3y + x^2y^2 - 2xy^3 + y^4 - x^3 + xy^2 + x^2y - y^3 / (x^3 + 3xy * (x + y)^2 + y^3) = x^4 + 4x^3y + x^2y^2 - 2xy^3 + y^4 - x^3 + xy^2 + x^2y - y^3 / x^3 + 3xy * (x + y)^2 + y^3 Therefore, the simplified expression is: (x^4 + 4x^3y + x^2y^2 - 2xy^3 + y^4 - x^3 + xy^2 + x^2y - y^3) / (x^3 + 3xy * (x + y)^2 + y^3)