Cho hình vuông ABCD, trên tia đối của tia CD lấy điểm E. Đường thẳng đi qua A và vuông góc với BE tại F, nó cắt DC tại G. Gọi H, I, J, M, K lần lượt là giao điểm của GF với BC, EF với HD, EA với HC, AB với HD, AE với HD.
Cho hình vuông ABCD, trên tia đối của tia CD lấy điểm E. Đường thẳng đi qua A và vuông góc với BE tại F, nó cắt DC tại G. Gọi H, I, J, M, K lần lượt là giao điểm của GF với BC, EF với HD, EA với HC, AB với HD, AE với HD. 1) a) Chứng minh: DG/AD = GF/EF; CE = BC.EF/GF. Từ đó suy ra DG + CE >= 2CD và EG >= 3CD. b) Tìm GTLN của S ABCD/S AEG 2) a) Chứng minh: tam giác BHA = tam giác CEB và tam giác DAE = tam giác CDH. b) Chứng minh AE vuông góc DH. c) Chứng minh AI//DJ//GB d) Chứng minh: tam giác AFB đồng dạng tam giác ABH; tam giác AFD đồng dạng tam giác ADH. Từ đó nhận xét gì về AFD và ADH 3) a) Chứng minh: KD^2 = KI.KH b) Chứng minh: EJ. EK.HJ=HK.HD.EC c) Chứng minh: HJ.HC.EK=EI.EF.HK 4) Chứng minh: Khi E thay đổi trên tia đối của tia CD thì BM/CJ là không đổi.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi. Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ