Tham khảo câu trả lời từ Trợ lý ảo Lazi Sure, let's solve these equations step by step. ### 1) \(\frac{X+2}{x} - \frac{x^2 + 5x + 4}{x(x+2)} = \frac{x}{x+2}\) First, let's simplify the left-hand side (LHS): \[ \frac{X+2}{x} - \frac{x^2 + 5x + 4}{x(x+2)} \] Notice that \(x^2 + 5x + 4\) can be factored as \((x+1)(x+4)\): \[ \frac{X+2}{x} - \frac{(x+1)(x+4)}{x(x+2)} \] Now, let's find a common denominator for the terms on the LHS: \[ \frac{X+2}{x} - \frac{(x+1)(x+4)}{x(x+2)} = \frac{(x+2)(x+2) - (x+1)(x+4)}{x(x+2)} \] Simplify the numerator: \[ (x+2)(x+2) - (x+1)(x+4) = x^2 + 4x + 4 - (x^2 + 5x + 4) = x^2 + 4x + 4 - x^2 - 5x - 4 = -x \] So, the LHS simplifies to: \[ \frac{-x}{x(x+2)} = \frac{-1}{x+2} \] Now, let's compare this with the right-hand side (RHS): \[ \frac{-1}{x+2} = \frac{x}{x+2} \] For these to be equal, \(x\) must be \(-1\): \[ \frac{-1}{x+2} = \frac{-1}{x+2} \] So, the solution is \(x = -1\). ### 2) \(\frac{1}{x+1} - \frac{5}{x+2} = \frac{15}{(x+1)(2-x)}\) First, let's find a common denominator for the LHS: \[ \frac{1}{x+1} - \frac{5}{x+2} = \frac{(x+2) - 5(x+1)}{(x+1)(x+2)} \] Simplify the numerator: \[ (x+2) - 5(x+1) = x + 2 - 5x - 5 = -4x - 3 \] So, the LHS becomes: \[ \frac{-4x - 3}{(x+1)(x+2)} \] Now, let's compare this with the RHS: \[ \frac{-4x - 3}{(x+1)(x+2)} = \frac{15}{(x+1)(2-x)} \] Notice that \((2-x)\) can be written as \(-(x-2)\), so: \[ \frac{15}{(x+1)(2-x)} = \frac{15}{-(x+1)(x-2)} = -\frac{15}{(x+1)(x-2)} \] So, we have: \[ \frac{-4x - 3}{(x+1)(x+2)} = -\frac{15}{(x+1)(x-2)} \] Cross-multiplying gives: \[ -4x - 3 = -15(x+2) \] Simplify: \[ -4x - 3 = -15x - 30 \] Rearrange terms: \[ -4x + 15x = -30 + 3 \] \[ 11x = -27 \] \[ x = -\frac{27}{11} \] ### 3) \(1 - \frac{6x}{x-2} + \frac{9x + 4}{x+2} = \frac{x(3x-2) + 1}{x^2 - 4}\) First, let's simplify the LHS: \[ 1 - \frac{6x}{x-2} + \frac{9x + 4}{x+2} \] Notice that \(x^2 - 4\) can be factored as \((x-2)(x+2)\), so let's find a common denominator: \[ 1 - \frac{6x}{x-2} + \frac{9x + 4}{x+2} = \frac{(x-2)(x+2) - 6x(x+2) + (9x+4)(x-2)}{(x-2)(x+2)} \] Simplify the numerator: \[ (x-2)(x+2) = x^2 - 4 \] \[ -6x(x+2) = -6x^2 - 12x \] \[ (9x+4)(x-2) = 9x^2 - 18x + 4x - 8 = 9x^2 - 14x - 8 \] Combine these: \[ x^2 - 4 - 6x^2 - 12x + 9x^2 - 14x - 8 = 4x^2 - 26x - 12 \] So, the LHS becomes: \[ \frac{4x^2 - 26x - 12}{x^2 - 4} \] Now, let's compare this with the RHS: \[ \frac{x(3x-2) + 1}{x^2 - 4} \] Simplify the numerator of the RHS: \[ x(3x-2) + 1 = 3x^2 - 2x + 1 \] So, we have: \[ \frac{4x^2 - 26x - 12}{x^2 - 4} = \frac{3x^2 - 2x + 1}{x^2 - 4} \] For these to be equal, the numerators must be equal: \[ 4x^2 - 26x - 12 = 3x^2 - 2x + 1 \] Rearrange terms: \[ 4x^2 - 3x^2 - 26x + 2x - 12 - 1 = 0 \] \[ x^2 - 24x - 13 = 0 \] Solve this quadratic equation using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ x = \frac{24 \pm \sqrt{24^2 - 4 \cdot 1 \cdot (-13)}}{2 \cdot 1} \] \[ x = \frac{24 \pm \sqrt{576 + 52}}{2} \] \[ x = \frac{24 \pm \sqrt{628}}{2} \] \[ x = \frac{24 \pm 2\sqrt{157}}{2} \] \[ x = 12 \pm \sqrt{157} \] So, the solutions are \(x = 12 + \sqrt{157}\) and \(x = 12 - \sqrt{157}\).