Bài tập  /  Bài đang cần trả lời

Cho x, y là hai số khác không, thõa mãn điều kiện 5y + x = 2xy(x^2 + y^2) ​và 5y - x = xy(y^2 - x^2)​. Tính M = x - y​

Cho x, y là hai số khác không, thõa mãn điều kiện 5y + x = 2xy(x^2 + y^2) ​và 5y - x = xy(y^2 - x^2)​. Tính M = x - y​
1 Xem trả lời
Hỏi chi tiết
96
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải hệ phương trình \(5y + x = 2xy(x^2 + y^2)\) và \(5y - x = xy(y^2 - x^2)\), ta thực hiện các bước sau:

1. **Phương trình đầu tiên:**
\[
5y + x = 2xy(x^2 + y^2)
\]

2. **Phương trình thứ hai:**
\[
5y - x = xy(y^2 - x^2)
\]

Đầu tiên, cộng hai phương trình lại với nhau:
\[
(5y + x) + (5y - x) = 2xy(x^2 + y^2) + xy(y^2 - x^2)
\]
\[
10y = 2xy(x^2 + y^2) + xy(y^2 - x^2)
\]

Rút gọn vế phải:
\[
10y = xy[2(x^2 + y^2) + (y^2 - x^2)]
\]
\[
10y = xy[2x^2 + 2y^2 + y^2 - x^2]
\]
\[
10y = xy[x^2 + 3y^2]
\]

Chia cả hai vế cho \(y\) (vì \(y \neq 0\)):
\[
10 = x(x^2 + 3y^2)
\]

Tiếp theo, trừ hai phương trình:
\[
(5y + x) - (5y - x) = 2xy(x^2 + y^2) - xy(y^2 - x^2)
\]
\[
2x = 2xy(x^2 + y^2) - xy(y^2 - x^2)
\]

Rút gọn vế phải:
\[
2x = xy[2(x^2 + y^2) - (y^2 - x^2)]
\]
\[
2x = xy[2x^2 + 2y^2 - y^2 + x^2]
\]
\[
2x = xy[3x^2 + y^2]
\]

Chia cả hai vế cho \(x\) (vì \(x \neq 0\)):
\[
2 = y(3x^2 + y^2)
\]

Bây giờ ta có hệ phương trình:
\[
10 = x(x^2 + 3y^2)
\]
\[
2 = y(3x^2 + y^2)
\]

Giả sử \(x = y\), thay vào phương trình thứ nhất:
\[
10 = y(y^2 + 3y^2)
\]
\[
10 = y \cdot 4y^2
\]
\[
10 = 4y^3
\]
\[
y^3 = \frac{10}{4}
\]
\[
y^3 = \frac{5}{2}
\]
\[
y = \sqrt[3]{\frac{5}{2}}
\]

Thay \(y = \sqrt[3]{\frac{5}{2}}\) vào phương trình thứ hai:
\[
2 = \sqrt[3]{\frac{5}{2}}(3(\sqrt[3]{\frac{5}{2}})^2 + (\sqrt[3]{\frac{5}{2}})^2)
\]
\[
2 = \sqrt[3]{\frac{5}{2}}(3 \cdot \frac{5}{2} + \frac{5}{2})
\]
\[
2 = \sqrt[3]{\frac{5}{2}} \cdot 4 \cdot \frac{5}{2}
\]
\[
2 = \sqrt[3]{\frac{5}{2}} \cdot 10
\]
\[
2 = 10 \cdot \sqrt[3]{\frac{5}{2}}
\]
\[
\sqrt[3]{\frac{5}{2}} = \frac{1}{5}
\]

Điều này không thỏa mãn vì \(\sqrt[3]{\frac{5}{2}} \neq \frac{1}{5}\).

Vậy ta cần tìm nghiệm khác. Thay \(x = -y\) vào phương trình:
\[
10 = -y((-y)^2 + 3y^2)
\]
\[
10 = -y(y^2 + 3y^2)
\]
\[
10 = -y \cdot 4y^2
\]
\[
10 = -4y^3
\]
\[
y^3 = -\frac{10}{4}
\]
\[
y^3 = -\frac{5}{2}
\]
\[
y = -\sqrt[3]{\frac{5}{2}}
\]

Thay \(y = -\sqrt[3]{\frac{5}{2}}\) vào phương trình thứ hai:
\[
2 = -\sqrt[3]{\frac{5}{2}}(3(-\sqrt[3]{\frac{5}{2}})^2 + (-\sqrt[3]{\frac{5}{2}})^2)
\]
\[
2 = -\sqrt[3]{\frac{5}{2}}(3 \cdot \frac{5}{2} + \frac{5}{2})
\]
\[
2 = -\sqrt[3]{\frac{5}{2}} \cdot 4 \cdot \frac{5}{2}
\]
\[
2 = -\sqrt[3]{\frac{5}{2}} \cdot 10
\]
\[
2 = -10 \cdot \sqrt[3]{\frac{5}{2}}
\]
\[
\sqrt[3]{\frac{5}{2}} = -\frac{1}{5}
\]

Điều này cũng không thỏa mãn vì \(\sqrt[3]{\frac{5}{2}} \neq -\frac{1}{5}\).

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cdot 1^2)
\]
\[
10 = 2(4 + 3)
\]
\[
10 = 2 \cdot 7
\]
\[
10 = 14
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 1\) và \(y = 2\) vào phương trình:
\[
10 = 1(1^2 + 3 \cdot 2^2)
\]
\[
10 = 1(1 + 12)
\]
\[
10 = 1 \cdot 13
\]
\[
10 = 13
\]

Điều này không thỏa mãn.

Vậy ta cần tìm nghiệm khác. Thay \(x = 2\) và \(y = 1\) vào phương trình:
\[
10 = 2(2^2 + 3 \cd
0
0
Ak sát boy
hôm qua
vậy  M x = 9  <=> x = 6 , y = 3

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×