Tìm x, biết? Tính giá trị của các biểu thức? Tham khảo câu trả lời từ Trợ lý ảo Lazi Để giải các bài toán trong hình, ta sẽ lần lượt giải từng bài một. **Bài 9: Tìm x, biết:** \[ x - \frac{5}{11} = \frac{1}{13} - \frac{1}{11} - \frac{1}{12} - \frac{1}{20} - \frac{1}{30} - \frac{1}{42} - \frac{1}{56} - \frac{1}{72} - \frac{1}{90} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110} \] Đầu tiên, ta tính giá trị của vế phải: \[ \frac{1}{13} - \frac{1}{11} - \frac{1}{12} - \frac{1}{20} - \frac{1}{30} - \frac{1}{42} - \frac{1}{56} - \frac{1}{72} - \frac{1}{90} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110} \] Kết quả là: \[ \frac{1}{13} - \frac{1}{11} - \frac{1}{12} - \frac{1}{20} - \frac{1}{30} - \frac{1}{42} - \frac{1}{56} + \frac{1}{110} \] Sau khi tính toán, ta có: \[ x - \frac{5}{11} = -0.202020202 \] \[ x = -0.202020202 + \frac{5}{11} \] \[ x = -0.202020202 + 0.454545454 \] \[ x = 0.252525252 \] **Bài 10: Tính giá trị của biểu thức:** \[ A = \frac{1}{2} + \frac{1}{12} + \frac{1}{72} + \frac{3}{2022} \] \[ A = \frac{1}{2} + \frac{1}{12} + \frac{1}{72} + \frac{3}{2022} \] Sau khi tính toán, ta có: \[ A = 0.5 + 0.083333333 + 0.013888889 + 0.001484403 \] \[ A = 0.598706625 \] **Bài 11: Tìm x, biết:** a) \[ \frac{1}{2} - \frac{3}{5} = -\left(\frac{1}{5}\right) - \frac{3}{20} \] \[ \frac{1}{2} - \frac{3}{5} = -\frac{1}{5} - \frac{3}{20} \] \[ \frac{1}{2} - \frac{3}{5} = -\frac{4}{20} - \frac{3}{20} \] \[ \frac{1}{2} - \frac{3}{5} = -\frac{7}{20} \] \[ x = -\frac{7}{20} \] b) \[ \frac{5}{9} x - \frac{1}{9} = \frac{11}{8} x \] \[ \frac{5}{9} x - \frac{11}{8} x = \frac{1}{9} \] \[ x \left(\frac{5}{9} - \frac{11}{8}\right) = \frac{1}{9} \] \[ x \left(\frac{40}{72} - \frac{99}{72}\right) = \frac{1}{9} \] \[ x \left(\frac{-59}{72}\right) = \frac{1}{9} \] \[ x = \frac{1}{9} \times \frac{72}{-59} \] \[ x = \frac{8}{-59} \] c) \[ 0.6x - \frac{1}{10} = \frac{1}{2} - \frac{1}{5} x \] \[ 0.6x + \frac{1}{5} x = \frac{1}{2} + \frac{1}{10} \] \[ 0.8x = \frac{6}{10} \] \[ x = \frac{6}{10} \times \frac{10}{8} \] \[ x = \frac{6}{8} \] \[ x = \frac{3}{4} \] d) \[ \frac{1}{4} x - \frac{1}{3} x - \frac{1}{2} x = 0.2x - \frac{1}{8} \] \[ \left(\frac{1}{4} - \frac{1}{3} - \frac{1}{2}\right) x = 0.2x - \frac{1}{8} \] \[ \left(\frac{3}{12} - \frac{4}{12} - \frac{6}{12}\right) x = 0.2x - \frac{1}{8} \] \[ \left(\frac{-7}{12}\right) x = 0.2x - \frac{1}{8} \] \[ \left(\frac{-7}{12} - 0.2\right) x = -\frac{1}{8} \] \[ \left(\frac{-7}{12} - \frac{2}{10}\right) x = -\frac{1}{8} \] \[ \left(\frac{-35}{60} - \frac{12}{60}\right) x = -\frac{1}{8} \] \[ \left(\frac{-47}{60}\right) x = -\frac{1}{8} \] \[ x = \frac{-1}{8} \times \frac{60}{-47} \] \[ x = \frac{60}{376} \] \[ x = \frac{15}{94} \] **Bài 12: Tính giá trị của các biểu thức sau:** a) \[ A = 0.25x - \frac{1}{6} x + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{5} x - 0.4\right) \text{ tại } x = \frac{1}{247} \] \[ A = 0.25 \times \frac{1}{247} - \frac{1}{6} \times \frac{1}{247} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{5} \times \frac{1}{247} - 0.4\right) \] \[ A = \frac{0.25}{247} - \frac{1}{6 \times 247} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{5 \times 247} - 0.4\right) \] \[ A = \frac{0.25}{247} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4 - \frac{1}{1235} - 0.4\right) \] \[ A = \frac{1}{988} - \frac{1}{1482} + \frac{1}{2} - \frac{1}{3} - \left(4