Cho Sinoc --3 Tub 45 C d e, a): Sin (-2) b) Sin (2-7πT) Sin ( x + 10πT) Sin (-x-5π) Sin (11πT - x) J, Sin (8πT - x) 7
0 Xem trả lời
21 Tham khảo câu trả lời từ Trợ lý ảo Lazi Given \( \sin(x) = -\frac{3}{45} \), we need to evaluate the sine function for various arguments using trigonometric identities. Let's break down each part: a) \(\sin(-x)\) \[ \sin(-x) = -\sin(x) = -\left(-\frac{3}{45}\right) = \frac{3}{45} \] b) \(\sin(x - 7\pi)\) \[ \sin(x - 7\pi) = \sin(x + \pi - 8\pi) = \sin(x - \pi) = -\sin(x) = -\left(-\frac{3}{45}\right) = \frac{3}{45} \] c) \(\sin(x + 10\pi)\) \[ \sin(x + 10\pi) = \sin(x + 2 \cdot 5\pi) = \sin(x) = -\frac{3}{45} \] d) \(\sin(-x - 5\pi)\) \[ \sin(-x - 5\pi) = \sin(-(x + 5\pi)) = -\sin(x + 5\pi) = -\sin(x) = -\left(-\frac{3}{45}\right) = \frac{3}{45} \] e) \(\sin(11\pi - x)\) \[ \sin(11\pi - x) = \sin(\pi - (12\pi - x)) = \sin(\pi - x) = \sin(x) = -\frac{3}{45} \] f) \(\sin(8\pi - x)\) \[ \sin(8\pi - x) = \sin(- (x - 8\pi)) = -\sin(x - 8\pi) = -\sin(x) = -\left(-\frac{3}{45}\right) = \frac{3}{45} \] So, the values of each are as below: a) \(\sin(-x) = \frac{3}{45} \) b) \(\sin(x - 7\pi) = \frac{3}{45} \) c) \(\sin(x + 10\pi) = -\frac{3}{45} \) d) \(\sin(-x - 5\pi) = \frac{3}{45} \) e) \(\sin(11\pi - x) = -\frac{3}{45} \) f) \(\sin(8\pi - x) = \frac{3}{45} \)