Bài tập  /  Bài đang cần trả lời

Cho hình bình hành ABCD trên cạnh AB lấy M trên cạnh CD lấy N sao cho AM = CN. Chứng minh AMCN là hình bình hành. Chứng minh DMBN là hình bình hành

Cho hình bình hành abcd trên cạnh AB lấy m trên cạnh CD lấy n sao cho AM = CN chứng minh amcn là hình bình hành chứng minh dm bn là hình bình hành
2 Xem trả lời
Hỏi chi tiết
74
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng AMCN là hình bình hành và DMBN cũng là hình bình hành, ta sẽ sử dụng một số đặc điểm của hình bình hành và vector.

### Chứng minh AMCN là hình bình hành:

1. **Định nghĩa điểm**:
- Gọi A, B, C, D lần lượt là các đỉnh của hình bình hành ABCD.
- Gọi M là điểm trên cạnh AB và N là điểm trên cạnh CD sao cho \( AM = CN \).

2. **Tính chất của các cạnh**:
- Vì ABCD là hình bình hành nên các cạnh đối diện bằng nhau và song song:
- \( AB \parallel CD \) và \( AD \parallel BC \).
- \( AB = CD \).

3. **So sánh vector**:
- Xét các vector:
- \( \vec{AM} + \vec{MN} = \vec{AN} \), và
- \( \vec{CN} + \vec{NM} = \vec{CM} \).
- Vì \( AM = CN \) theo giả thiết, và \( AB = CD \) nên có:
- \( \vec{AM} = \vec{CN} \).

4. **Điểm giữa và tính chất song song**:
- Gọi điểm O là trung điểm của AM và CN. Ta có:
- \( \vec{AO} = \frac{1}{2} \vec{AM} \) và \( \vec{CO} = \frac{1}{2} \vec{CN} \).
- Như vậy, \( \vec{AM} = \vec{CN} \) nên \( O \) là trung điểm của cả AM và CN.

5. **Kết luận**:
- Do đó, \( AMCN \) có các cạnh đối diện bằng nhau và song song (\( AM = CN \) và \( AN = MC \)), từ đó ta suy ra rằng AMCN là hình bình hành.

### Chứng minh DMBN là hình bình hành:

1. **Dùng các đặc điểm của hình bình hành**:
- Xét DMBN, với các điểm D, M, B, N.
- Ta đã biết rằng AMCN là hình bình hành với \( AM = CN \).

2. **Chứng minh cạnh đối diện**:
- Do \( \vec{AD} \parallel \vec{BC} \) và \( \vec{DM} \parallel \vec{BN} \), đồng thời:
- \( DM = BN \) (vì 2 đoạn này đều là ví dụ của các đoạn nối các đỉnh của AMCN, với đoạn AM = CN).

3. **Kết luận**:
- Vì các cạnh của DMBN là song song và bằng nhau, vậy DMBN cũng là hình bình hành.

### Kết luận chung:
Từ những lý thuyết trên, ta đã chứng minh rằng:

- AMCN là hình bình hành.
- DMBN là hình bình hành.

Sử dụng kiến thức hình học đồng thời với tính chất của các vector, ta có thể khẳng định được các kết quả ở trên một cách chặt chẽ.
1
0
Quỳnh Anh
24/07/2024 18:46:04
+5đ tặng

a: Xét tứ giác AMCN có

AM//NC

AM=CN

=>AMCN là hình bình hành

b:

AM+MB=AB

CN+ND=CD
mà AM=CN và AB=CD

nên MB=ND

Xét tứ giác DMBN có

BM//DN

BM=DN

=>DMBN là hình bình hành

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Thanh Lâm
24/07/2024 18:46:07
+4đ tặng

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×