Cho tam giác ABC. Trên nửa mặt phẳng không chứa điểm C có bờ là đường thẳng AB, vẽ tia AD sao cho BAD^=ABC^. Trên nửa mặt phẳng không chứa điểm B có bờ là đường thẳng AC, vẽ tia AE sao cho CAE^=ACB^. Chứng minh.:
a) AD song song với BC;
b) Ba điểm D, A, E thẳng hàng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Có BAD^=ABC^( giả thiết),
Mà hai góc ở vị trí so le trong nên AD // BC (theo tính chất hai đường thẳng song song).
b) Tương tự ý a), chứng minh được AE // BC
Theo tiên đề ơ-clit, hai đường thẳng AE và AD trùng nhau. Từ đó ba điểmD, A, E thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |