Cho tam giác ABC vuông tại A có ∠B = 2∠C, đường cao AD.
a) Chứng tỏ ΔADB và ΔCAB đồng dạng
b) Kẻ tia phân giác của góc ABC cắt AD tại F và AC tại E
Chứng tỏ AB2 = AE.AC
c) Chứng tỏ DFFA=AEEC
d) Biết AB = 2BD. Chứng tỏ diện tích tam giác ABC bằng ba lần diện tích tam giác BFC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ΔADB và ΔABC vuông có ∠B chung ∠ ΔADB ∼ ΔCAB (g.g)
b) Vì ∠B = 2∠C (gt) ∠ ∠B1 = ∠B2 = ∠C
Do đó hai tam giác vuông ABE và ACB đồng dạng (g.g)
c) Ta có ΔADB ∼ ΔCAB (cmt)
Theo tính chất đường phân giác ta có :
d) Ta có AB = 2BD (gt)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |