Bài tập  /  Bài đang cần trả lời

Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho \(\frac = \frac{1}{3},\frac = \frac{2}{3},\frac = \frac{3}{4}\). a) Xác định E, F lần lượt là giao điểm của các đường thẳng AC, BD với mặt phẳng (MNP). b) Chứng minh rằng các đường thẳng NE, PF và CD cùng đi qua một điểm.

Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho \(\frac = \frac{1}{3},\frac = \frac{2}{3},\frac = \frac{3}{4}\).

a) Xác định E, F lần lượt là giao điểm của các đường thẳng AC, BD với mặt phẳng (MNP).

b) Chứng minh rằng các đường thẳng NE, PF và CD cùng đi qua một điểm.

1 Xem trả lời
Hỏi chi tiết
21
0
0
Tôi yêu Việt Nam
10/09/2024 22:14:57

Lời giải

a)

+) Trong mặt phẳng (ABC), gọi giao điểm của MP với AC là E.

Mà MP ⊂ (MNP) nên (MNP) ∩ AC = {E}.

+) Trong mặt phẳng (ABD), gọi giao điểm của MN với BD là F.

Mà MP ⊂ (MNP) nên (MNP) ∩ BD = {F}.

b) • Ta có: N ∈ AD, mà AD ⊂ (ACD) nên N ∈ (ACD).

Lại có N ∈ (MNP)

Do đó N là giao điểm của (ACD) và (MNP).

Mặt khác: MP ∩ AC = {E};

                 MP ⊂ (MNP);

                 AC ⊂ (ACD).

Do đó E là giao điểm của (ACD) và (MNP).

Suy ra NE = (MNP) ∩ (ACD).

Trong mặt phẳng (ACD), nối NE cắt CD tại I.

Khi đó I ∈ CD và I ∈ NE ⊂ (MNP)

• Ta có: P ∈ BC, mà BC ⊂ (BCD) nên P ⊂ (BCD)

Lại có P ∈ (MNP)

Do đó P là giao điểm của (BCD) và (MNP).

Mặt khác: MN ∩ BD = {F}.

                 MN ⊂ (MNP);

                 BD ⊂ (BCD) .

Do đó F là giao điểm của (BCD) và (MNP).

Suy ra PF = (BCD) ∩ (MNP).

Trong mặt phẳng (BCD), gọi giao điểm của CD với PF là I.

Khi đó I ∈ CD, mà CD ⊂ (ACD)

            I ∈ PF, mà PF ⊂ (MNP)

Suy ra I là giao điểm của hai mặt phẳng (MNP) và (ACD).

Hay I nằm trên giao tuyến NE của (MNP) và (ACD).

Do đó I ∈ NE.

Vậy ba đường thẳng NE, PF, CD cùng đi qua điểm I.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×