Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho \(\frac = \frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\).
a) Chứng minh rằng C’M // (A’BM’).
b) Chứng minh rằng G’K // (BCC’B’).
c) Chứng minh rằng (GG’K) // (BCC’B’).
d) Gọi (α) là mặt phẳng đi qua K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt cạnh CC’ tại điểm I. Tính \(\frac{{IC'}}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a)
Trong mp(BCC’B’) có tứ giác BCC’B’ là hình bình hành nên BC // B’C’ và BC = B’C’.
Lại có M, N lần lượt là trung điểm của BC, B’C’ nên BM = C’M’ = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)B’C’.
Tứ giác BMC’M’ có BM // C’M’ (do BC // B’C’) và BM = C’M’ nên BMC’M’ là hình bình hành
Do đó C’M // M’B, mà M’B ⊂ (A’BM’) nên C’M // (A’BM’).
b)
Trong mp(A’BM’), xét DA’BM’ có \(\frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên G’K // M’B (theo định lí Thalès đảo)
Mà M’B ⊂ (BCC’B’) nên G’K // (BCC’B’).
c)
Trong mp(BCC’B’), tứ giác CMM’C’ có C’M’ // CM và C’M’ = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)B’C’
Do đó tứ giác CMM’C’ là hình bình hành nên M’M // C’C và M’M = C’C.
Mà A’A // C’C và A’A = C’C nên A’A // M’M và A’A = M’M.
Khi đó AMM’A’ là hình bình hành nên A’M’ // AM và A’M’ = AM.
Lại có \(\frac = \frac{{A'G'}}{{A'M'}} = \frac{2}{3}\) nên A’G’ = AG, do đó G’M’ = GM.
Xét tứ giác GMM’G’ có: G’M’ = GM (do A’M’ // AM) và G’M’ = GM.
Do đó GMM’G’ là hình bình hành nên G’G // M’M
Lại có M’M ⊂ (BCC’B’) nên G’G // (BCC’B’).
Ta có: G’K // (BCC’B’);
G’G // (BCC’B’);
G’K, G’G cắt nhau tại điểm G’ và cùng nằm trong (GG’K)
Do đó (GG’K) // ((BCC’B’).
d)
Trong mp(ABB’A’), vẽ đường thẳng qua K và song song với AB, A’B’; cắt A’A và B’B lần lượt tại J và H.
Trong mp (ACC’A”), vẽ đường thẳng qua J và song song với AC, A’C’; cắt C’C tại I.
Ta có: IJ // AC mà AC ⊂ (ABC) nên IJ // (ABC);
JK // AB mà AB ⊂ (ABC) nên JK // (ABC).
Lại có IJ và JK cắt nhau tại J và cùng nằm trong mp(IJK) nên (IJK) // (ABC).
Theo bài, mp(α) // (ABC) và đi qua K nên mp(α) chính là mp(IJK).
Khi đó CC’ cắt (α) tại I.
Ta có: (IJK) // (ABC) mà (ABC) // (A’B’C’) nên (A’B’C’), (IJK), (ABC) là ba mặt phẳng song song với nhau.
Xét hai cát tuyến C’C và A’B bất kì cắt ba mặt phẳng song song (A’B’C’), (IJK), (ABC) lần lượt tại các điểm C’, I, C và A’, K, B. Khi đó theo định lí Thalès trong không gian ta có: \(\frac{{C'I}}{{A'K}} = \frac\)
Suy ra \[\frac{{A'K}} = \frac{{C'I}}\]
Theo bài, \(\frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên \(\frac{{A'B}}{{A'K}} = \frac{3}{2}\) do đó \(\frac{{A'B - A'K}}{{A'K}} = \frac{2}\) hay \(\frac{{A'K}} = \frac{1}{2}\)
Vậy \[\frac{{IC'}} = \frac{{A'K}} = \frac{1}{2}\].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |