Bài tập  /  Bài đang cần trả lời

Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE, K là giao điểm của DE và AH, F là giao điểm của AH và BC. M là trung điểmcủa AH. Chứng minh MD2 = MK . MF.

Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE, K là giao điểm của DE và AH, F là giao điểm của AH và BC. M là trung điểmcủa AH. Chứng minh MD2 = MK . MF.
1 Xem trả lời
Hỏi chi tiết
10
0
0
CenaZero♡
10/09/2024 22:41:17

Lời giải

Ta có \[\widehat {BDC} = \widehat {BEC}\] = 90° (góc nội tiếp chắn nửa đường tròn).

Vì BD và CE là đường cao của ∆ABC mà BD và CE cắt nhau tại H nên H là trực tâm của ∆ABC.

Suy ra  AH ⊥ BC hay\[\widehat {AFB} = \widehat {ADB}\]= 90°.

Do đó, đỉnh D, F cùng nhìn A, B dưới góc 90°.

Suy ra tứ giác ABFD nội tiếp ⇒ \[\widehat {ABD} = \widehat {AFD}\] (góc nội tiếp cùng chắn cung AD).

Lại có ∆ADH vuông tại D; M là trung điểm của AH.

⇒ DM là đường trung tuyến ứng cạnh huyền

⇒ DM = AM

⇒ \[\widehat {MAD} = \widehat {MDA}\]

Mà OD = OC nên ∆ODC cân suy ra \[\widehat {OCD} = \widehat {ODC}\]

Do đó \[\widehat {OCD} = \widehat {MAD} = \widehat {MDA} + \widehat {ODC}\].

Do AF⊥BC ⇒ \[\widehat {MAD} + \widehat {ODC} = 90^\circ \]

⇒ \[\widehat {MDA} + \widehat {ODC} = 90^\circ \]⇒ \[\widehat {MDO} = 90^\circ \] ⇒ MD là tiếp tuyến của (O)

⇒ \[\widehat {ABF} + \widehat {MDE}\] (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây chắn cungED).⇒ \[\widehat {AFD} + \widehat {MDE}\] ⇒ MDK ᔕ ∆MFD (g.g).

⇒ \[\frac = \frac\] ⇒ MD2 = MK . MF.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×