a) Dựa vào đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) (H.6.2), tìm x sao cho y = 8.
b) Vẽ đồ thị của các hàm số y = 2x + 1 và y = 2x2 trên cùng một mặt phẳng tọa độ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) Với y = 8, từ điểm 8 trên trục Oy, ta kẻ đường thẳng song song với Ox, đường thẳng này cắt đồ thị hàm số \(y = \frac{1}{2}{x^2}\) tại hai điểm, từ hai điểm đó hạ vuông góc xuống trục Ox, ta thấy hai chân đường vuông góc trên Ox là điểm 4 và – 4.
Vậy với y = 8 thì x = 4, x = – 4.
b)
+ Ta có: y = 2x + 1
Tập xác định của hàm số là \(\mathbb{R}\).
Với x = 0 thì y = 2 . 0 + 1 = 1.
Với x = 1 thì y = 2 . 1 + 1 = 3.
Do đó đồ thị hàm số y = 2x + 1 là đường thẳng đi qua 2 điểm (0; 1) và (1; 3).
+ Ta có: y = 2x2
Tập xác định của hàm số là \(\mathbb{R}\).
Bảng giá trị tương ứng của x và y
x | 0 | 1 | – 1 | 2 | – 2 |
y = 2x2 | 0 | 2 | 2 | 8 | 8 |
Trên mặt phẳng tọa độ, vẽ đường cong đi qua các điểm (0; 0), (1; 2), (– 1; 2), (2; 8), (– 2; 8), đường cong này chính là đồ thị của hàm số y = 2x2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |