Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O, R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó.
b) Chứng minh AO vuông góc với BC. Cho biết R = 15 cm, BC = 24cm. Tính AB, OA.
c) Chứng minh BC là tia phân giác của góc ABH
d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. Chứng minh IH = IB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có AB, AC là tiếp tuyến của (O) ⇒ ABO^=ACO^ = 90°
⇒ ABO^+ACO^ = 90° + 90° = 180°
⇒ A, B, O, C cùng thuộc đường tròn đường kính (AO).
b) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC (tính chất hai tiếp tuyến cắt nhau)
và có OB = OC nên AO là đường trung trực của BC⇒AO ⊥ BC
Gọi AO ∩ BC = E
⇒ E là trung điểm BC⇒ BE = 12BC
Do AB ⊥ OB, BE ⊥ AO
Áp dụng hệ thức lượng vào Δ vuông ABO đường cao BE có:
1BE2=1OB2+1BA2⇒ AB = 20
⇒ OA2 = AB2 + OB2 = 625⇒AO = 25
c) Ta có:BH ⊥ OC ⇒ BH//AC ⇒ HBC^=ACB^=ABC^
⇒ BC là phân giác ABH^
d) Gọi BD ∩ AC = F
Ta có: FB ⊥ BC, AB = AC
⇒ A là trung điểm CF
⇒ AF = ACMà BH ⊥ CD
⇒ BH // CF
⇒ BIAF=DIDA=IHAC
⇒ IB = IH.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |