Bài tập  /  Bài đang cần trả lời

Cho điểm M nằm ngoài đường tròn ( O; R ) sao cho OM = 2R. Từ M kẻ các tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm ). Kẻ đường kính AC của đường tròn (O). Gọi H là giao điểm của AB và OM. a) Chứng minh 4 điểm : O, A, B, M cùng thuộc 1 đường tròn. b) Tính tỉ số OHOM . c) Gọi E là giao điểm của CM và đường tròn (O). Chứng minh HE vuông góc với BE.

Cho điểm M nằm ngoài đường tròn ( O; R ) sao cho OM = 2R. Từ M kẻ các tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm ). Kẻ đường kính AC của đường tròn (O). Gọi H là giao điểm của AB và OM.

a) Chứng minh 4 điểm : O, A, B, M cùng thuộc 1 đường tròn.

b) Tính tỉ số OHOM .

c) Gọi E là giao điểm của CM và đường tròn (O). Chứng minh HE vuông góc với BE.

1 Xem trả lời
Hỏi chi tiết
44
0
0
Nguyễn Thị Sen
11/09/2024 19:54:59

a) Vì MA, MB là tiếp tuyến của (O)

⇒ MA ⊥ OA ⇒ MAO^ = 90°

⇒ MB ⊥ OB ⇒ MBO^  = 90°

MAO^+MBO^= 90° + 90° = 180°

⇒ OAMB là tứ giác nội tiếp

⇒ O, A, B, M cùng thuộc 1 đường tròn (đpcm)

b) Vì MA, MB là tiếp tuyến của (O) kẻ từ M 

⇒ M cách đều A, B mà O cách đều A, B

⇒ MO là trung trực của AB

⇒ MO ⊥ AB tại H , H là trung điểm AB

Tam giác OAM vuông tại A có đường cao AH

Suy ra: OA2 = OH.OM

⇒ OH = R22R=R2

⇒ OHOM=R22R=14

c) Áp dụng hệ thức lượng trong tam giác MAO vuông có: MA2 = MH.MO (1)

MA là tiếp tuyến nên: MAE^=MCA^  (cùng chắn cung AE)

Xét ∆MAE và ∆MCA có: MAE^=MCA^

AMC^ chung

Suy ra: ∆MAE ~ ∆MCA (g.g)

⇒ MAME=MCMA hay MA2 = MC.ME (2)

Từ (1) và (2): MC.ME = MH.MO

⇒ MHME=MCMO

Xét ∆MHE và ∆MCO có:

OMC^ chung

MHME=MCMO

⇒ ∆MHE ~ ∆MCO (c.g.c)

⇒ MHE^=MOC^

⇒ 180° – MHE^  = 180° – MOC^  hay HEC^=AOM^

Lại có: BEAC là tứ giác nội tiếp (O) do 4 điểm đều nằm trên đường tròn nên BEC^=BAC^  (cùng nhìn cạnh BC)

Lại có theo phần a: OBMA là tứ giác nội tiếp nên OMB^=BAO^ ; ABO^=OMA^

Suy ra: BEC^=OMB^

Lại có: ABO^=OMB^ (Cùng phụ với MBA^ )

Mà ABO^=OMA^

Suy ra:  BEC^=OMA^

HEB^=HEC^+BEC^=AOM^+OMA^

= 90°

Vậy HE vuông góc với BE.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×