Cho tam giác ABC có AB = 4, AC = 6 và \(\widehat A\)= 60°. Tính độ dài đường phân giác trong của góc A.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: BC2 = AB2 + AC2 – 2. AB. AC. cos \(\left( {\widehat A} \right)\)
BC2 = 42 + 62 – 2. 4. 6. cos 60°
Suy ra: BC = \(2\sqrt 7 \).
Gọi AD là đường phân giác trong của tam giác ABC
Áp dụng tính chất đường phân giác ta có:
\(\frac\,\, = \,\,\frac\,\, = \,\,\frac{4}{6}\,\, = \,\,\frac{2}{3}\)
Suy ra: \[\left\{ \begin{array}{l}BD\, = \,\frac{2}{5}\,BC\,\, = \,\,\,\frac{{4\sqrt 7 }}{5}\\DC\,\, = \,\,\frac{3}{5}\,BC\,\, = \,\,\frac{{6\sqrt 7 }}{5}\,\end{array} \right.\]
Lại có: BD2 = AB2 + AD2 – 2. AB. AD. cosBAD
hay \(\frac\,\, = \,\,{4^2}\, + \,\,A{D^2}\, - \,2\, \cdot \,\,4\,\, \cdot \,AD\, \cdot \,\cos 30^\circ \)
Suy ra AD2 – \(4\sqrt 3 AD\,\, + \,\,\frac\) = 0
⇔ \[\left[ \begin{array}{l}AD\,\, = \,\,\,\frac{{8\sqrt 3 }}{5}\\AD\,\, = \,\,\frac{{12\sqrt 2 }}{5}\,\end{array} \right.\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |