Bài tập  /  Bài đang cần trả lời

Tính chất của các số Cnk a) Quan sát ba dòng đầu, hoàn thành tiếp hai dòng cuối theo mẫu: (a + b)1 = a + b =C10a+C10b (a + b)2 = a2 + 2ab + b2 =C20a2+C21ab+C20b2 (a + b)3 = a3 + 3a2b + 3ab2 + b3 =C30a3+C31a2b+C32ab2+C30b3 (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 = ... (a + b)5 = a5 + 5a4b + ...

Tính chất của các số Cnk

a) Quan sát ba dòng đầu, hoàn thành tiếp hai dòng cuối theo mẫu:

(a + b)1 = a + b =C10a+C10b

(a + b)2 = a2 + 2ab + b2 =C20a2+C21ab+C20b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3 =C30a3+C31a2b+C32ab2+C30b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 = ...

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = ...

Nhận xét rằng các hệ số khai triển của hai số hạng cách đều số hạng đầu và số hạng cuối luôn bằng nhau. Hãy so sánh, chẳng hạn, C41 và C43, C52 và C53. Từ đó hãy dự đoán hệ thức giữa Cnk và Cnn−k (0 ≤ k ≤ n).

b) Dựa vào kết quả của HĐ3a, ta có thể viết những hàng đầu của tam giác Pascal dưới dạng:

(a + b)1

(a + b)2

(a + b)3

(a + b)4

(a + b)5

Từ tính chất của tam giác Pascal, hãy so sánh C10+C11 và C21, C20+C21 và C31,... Từ đó hãy dự đoán hệ thức giữa Cn−1k−1+Cn−1k và Cnk.

1 Xem trả lời
Hỏi chi tiết
17
0
0

a) (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 = C40a4 + C41a3b + C42a2b2 + C43ab3 + C44b4.

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

= C50a5 + C51a4b + C52a3b2 + C53a2b3 + C54ab4 + C55b5.

Ta thấy C41 = C43, C52 = C53,...

Dự đoán: Cnk = Cnn−k.

b) Ta thấy C10+C11 = C21, C20+C21 = C31,...

Dự đoán: Cn−1k−1+Cn−1k = Cnk.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×