Gieo ba con xúc xắc cân đối và đồng chất. Xét các biến cố sau:
A: “Số chấm trên mặt xuất hiện của ba con xúc xắc khác nhau”;
B: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Tính P(A | B) và P(B | A).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: Ω = {(a; b; c); 1 ≤ a, b, c ≤ 6} ⇒ n(Ω) = 6.6.6 = 216.
A = {(a; b; c)}, trong đó 1 ≤ a, b, c ≤ 6 và a, b, c là các số nguyên dương phân biệt.
Đó chính là một chỉnh hợp chập 3 của 6 phần tử {1; 2; 3; 4; 5; 6}.
Suy ra n(A) = \(A_6^3\) = 120.
Vậy P(A) = \(\frac\).
Xét biến cố đối \(\overline B \): “Số chấm xuất hiện trên mỗi con xúc xắc đều khác 6”.
Mỗi kết quả thuận lợi cho \(\overline B \) là một bộ ba số (a; b; c), trong đó a, b, c là các số nguyên dương bé hơn 6. Do đó, ta có n(B) = 5.5.5 = 125.
Vậy P(\(\overline B \)) = \(\frac\).
Suy ra P(B) = 1 – P(\(\overline B \)) = \(\frac\).
Mỗi kết quả thuận lợi cho AB là một bộ ba (a; b; c), trong đó 1 ≤ a, b, c ≤ 6 và a, b, c là các số nguyên dương khác nhau và có đúng một số bằng 6.
Có ba cách chọn một số bằng 6 và \(A_5^2\) = 20 cách chọn hai số còn lại trong 5 số {1; 2; 3; 4; 5}.
Ta có: n(B) = 3.20 = 60.
Suy ra P(AB) = \(\frac\).
Từ đó, ta có:
P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac\);
P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac = \frac{1}{2}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |