Từ điểm P ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến tiếp xúc với (O) tại A và B. Đoạn thẳng OP cắt (O) tại Q (Hình 10). Cho biết PB = 8, PQ = 4. Tính R và số đo \(\widehat {AOB}.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do PB và PA là hai tiếp tuyến của đường tròn (O) lần lượt tại B và A
Suy ra OB ⊥ BP; OA ⊥ AP
Nên ∆OBP vuông tại B; ∆OAP vuông tại A.
Xét ∆OPB vuông tại B, ta có OP2 = OB2 + PB2 (định lí Pythagore)
Hay (OQ + QP)2 = OB2 + PB2
Suy ra (R + 4)2 = R2 + 82
R2 + 8R + 16 = R2 + 64
8R = 48
R = 6.
Do đó OP = OQ + QP = 6 + 4 = 10.
Như vậy, \(\sin \widehat {BOP} = \frac = \frac{8} = \frac{4}{5},\) suy ra \(\widehat {BOP} \approx 53^\circ .\)
Theo bài, hai tiếp tuyến AP và BP của đường tròn (O; R) cắt nhau tại P nên OP là tia phân giác của góc AOB.
Khi đó, \(\widehat {AOB} = 2\widehat {BOP} \approx 2 \cdot 53^\circ = 106^\circ .\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |