Cho phương trình \({x^2} - \left( {2m - 1} \right)x + {m^2} - 1 = 0\) (với \(m\) là tham số).
1) Giải phương trình với \(m = 1.\)
2) Tìm tất cả các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn:
\(\left( {{x_1} - 2{x_2}} \right)\left( {{x_2} - 2{x_1}} \right) = 9.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Với \(m = 1,\) thay vào phương trình ta được:
\({x^2} - x = 0\) hay \(x\left( {x - 1} \right) = 0\) nên \(x = 0\) hoặc \(x = 1.\)
Vậy với \(m = 1\) thì phương trình có hai nghiệm là \(x = 0;\,\,x = 1.\)
2) Phương trình \({x^2} - \left( {2m - 1} \right)x + {m^2} - 1 = 0\) có:
\(\Delta = {\left[ { - \left( {2m - 1} \right)} \right]^2} - 4\left( {{m^2} - 1} \right) = 4{m^2} - 4m + 1 - 4{m^2} + 4 = - 4m + 5.\)
Để phương trình đã cho có hai nghiệm phân biệt thì \(\Delta > 0,\) tức là \( - 4m + 5 > 0\) hay \(m < \frac{5}{4}.\)
Như vậy, với \(m < \frac{5}{4}\) thì phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}.\)
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 1\\{x_1}{x_2} = {m^2} - 1.\end{array} \right.\)
Theo bài, \(\left( {{x_1} - 2{x_2}} \right)\left( {{x_2} - 2{x_1}} \right) = 9\)
\({x_1}{x_2} - 2x_1^2 - 2x_2^2 + 4{x_1}{x_2} = 9\)
\(5{x_1}{x_2} - 2\left( {x_1^2 + x_2^2} \right) = 9\)
\(9{x_1}{x_2} - 2\left( {x_1^2 + 2{x_1}{x_2} + x_2^2} \right) - 9 = 0\)
\(9{x_1}{x_2} - 2{\left( {{x_1} + {x_2}} \right)^2} - 9 = 0.\,\,\,\left( * \right)\)
Thay \[{x_1} + {x_2} = 2m - 1\] và \[{x_1}{x_2} = {m^2} - 1\] vào \(\left( * \right)\) ta được:
\(9\left( {{m^2} - 1} \right) - 2{\left( {2m - 1} \right)^2} - 9 = 0\)
\(9{m^2} - 9 - 2\left( {4{m^2} - 4m + 1} \right) - 9 = 0\)
\({m^2} + 8m - 20 = 0\)
\(m = 2\) hoặc \(m = - 10.\)
Ta thấy chỉ có giá trị \(m = - 10\) thỏa mãn \(m < \frac{5}{4}.\)
Vậy \(m = - 10.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |