Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AC, điểm E trên cạnh AC sao cho BD = CE.
Tìm vị trí của hai điểm D và E sao cho BD = DE = EC. Khi đó tìm vị trí của điểm IBằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét DADE có AD = AE nên DADE cân tại A.
Suy ra \(\widehat {ADE} = \widehat {AED}\).
Mà \(\widehat {DAE} + \widehat {ADE} + \widehat {AED} = 180^\circ \) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {ADE} = \widehat {AED} = \frac{{180^\circ - \widehat {DAE}}}{2}\,\,\,\,\,\left( 1 \right)\).
Tương tự với tam giác ABC cân tại A ta có \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2}\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(\widehat {ADE} = \widehat {ABC}\)
Mà hai góc này ở vị trí đồng vị nên DE // BC.
Suy ra \(\widehat {DEB} = \widehat {EBC}\) (hai góc so le trong) (3)
Do BD = DE nên DBDE là tam giác cân tại D
Suy ra \(\widehat {DBE} = \widehat {DEB}\) (4)
Từ (3) và (4) suy ra \(\widehat {DBE} = \widehat {EBC}\)
Khi đó BE là đường phân giác của góc ABC.
Tương tự, với DE = EC ta cũng chứng minh được CD là đường phân giác của góc ACB.
Xét tam giác ABC có BE, CE là hai đường phân giác của tam giác cắt nhau tại I
Suy ra I cách đều ba cạnh của tam giác ABC.
Vậy để BD = DE = EC thì BE và CD là hai đường phân giác của DABC, khi đó I cách đều ba cạnh của DABC.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |