Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac\]?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương pháp:
+ Sử dụng cách tìm giao tuyến hai mặt phẳng, tìm giao điểm của đường thẳng và mặt phẳng
+ Sử dụng định lý Ta-lét để tìm tỉ số
Cách giải:
a)
* Trong \[\left( {SBC} \right)\], kéo dài NK cắt SB tại G
Khi đó \[\left\{ \begin{array}{l}MG \subset \left( {MNK} \right)\\MG \subset \left( {SBC} \right)\end{array} \right.\] nên \[\left( {MNK} \right) \cap \left( {SAB} \right) = MG\]
* Trong (SAB), gọi MG cắt AB tại H
Khi đó \[\left\{ \begin{array}{l}H \in MG \subset \left( {MNK} \right)\\H \in AB\end{array} \right.\] nên H là giao điểm của AB với (MNK)
b)
* Xác định thiết diện
Gọi \[AC \cap BD = \left\{ O \right\}\], trong (SAC) có \[SO \cap MK = \left\{ I \right\}\]
Trong (ABCD) có \[BD \cap HN = \left\{ E \right\}\]
Trong (SBD) có \[EI \cap SD = \left\{ P \right\}\]
Khi đó ta có \[\left( {MNK} \right) \equiv \left( {MPKNH} \right)\]
Hay \[\left\{ \begin{array}{l}\left( {MNK} \right) \cap \left( {SBC} \right) = NK\\\left( {MNK} \right) \cap \left( {SAB} \right) = MH\\\left( {MNK} \right) \cap \left( {SAD} \right) = MP\\\left( {MNK} \right) \cap \left( {SDC} \right) = PK\\\left( {MNK} \right) \cap \left( {ABCD} \right) = NH\end{array} \right.\]
Nên thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNK) là ngũ giác PMHNK.
* Tính tỉ số \[\frac\]
Trong ∆SQK kẻ \[BF//SK\left( {F \in QK} \right)\]
Khi đó \[\frac = \frac\] (theo Ta-let) mà \[NB = NC \Rightarrow KC = BF\]
Mà \[\frac = \frac{1}{2}\] suy ra \[\frac = \frac{1}{2}\] mà \[BF//SK \Rightarrow \] BF là đường trung bình của ∆GQK.
Do đó B là trung điểm của SG
Trong ∆GMS kẻ \[BQ//SA\left( {Q \in GM} \right)\] mà B là trung điểm của SG nên QB là đường trung bình của ∆GSM
Suy ra \[\frac = \frac{1}{2} \Rightarrow \frac = \frac{1}{2}\] (do \[SM = MA\])
Vì \[QB//AM\], theo định lét Ta-let ta có \[\frac = \frac = \frac{1}{2} \Rightarrow \frac = 2\].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |