Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\]. a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK). b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac\]?

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].

a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).

b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac\]?

1 Xem trả lời
Hỏi chi tiết
35
0
0
Trần Đan Phương
13/09 17:39:05

Phương pháp:

+ Sử dụng cách tìm giao tuyến hai mặt phẳng, tìm giao điểm của đường thẳng và mặt phẳng

+ Sử dụng định lý Ta-lét để tìm tỉ số

Cách giải:

a)

* Trong \[\left( {SBC} \right)\], kéo dài NK cắt SB tại G

Khi đó \[\left\{ \begin{array}{l}MG \subset \left( {MNK} \right)\\MG \subset \left( {SBC} \right)\end{array} \right.\] nên \[\left( {MNK} \right) \cap \left( {SAB} \right) = MG\]

* Trong (SAB), gọi MG cắt AB tại H

Khi đó \[\left\{ \begin{array}{l}H \in MG \subset \left( {MNK} \right)\\H \in AB\end{array} \right.\] nên H là giao điểm của AB với (MNK)

b)

* Xác định thiết diện

Gọi \[AC \cap BD = \left\{ O \right\}\], trong (SAC) có \[SO \cap MK = \left\{ I \right\}\]

Trong (ABCD) có \[BD \cap HN = \left\{ E \right\}\]

Trong (SBD) có \[EI \cap SD = \left\{ P \right\}\]

Khi đó ta có \[\left( {MNK} \right) \equiv \left( {MPKNH} \right)\]

Hay \[\left\{ \begin{array}{l}\left( {MNK} \right) \cap \left( {SBC} \right) = NK\\\left( {MNK} \right) \cap \left( {SAB} \right) = MH\\\left( {MNK} \right) \cap \left( {SAD} \right) = MP\\\left( {MNK} \right) \cap \left( {SDC} \right) = PK\\\left( {MNK} \right) \cap \left( {ABCD} \right) = NH\end{array} \right.\]

Nên thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNK) là ngũ giác PMHNK.

* Tính tỉ số \[\frac\]

Trong ∆SQK kẻ \[BF//SK\left( {F \in QK} \right)\]

Khi đó \[\frac = \frac\] (theo Ta-let) mà \[NB = NC \Rightarrow KC = BF\]

Mà \[\frac = \frac{1}{2}\] suy ra \[\frac = \frac{1}{2}\] mà \[BF//SK \Rightarrow \] BF là đường trung bình của ∆GQK.

Do đó B là trung điểm của SG

Trong ∆GMS kẻ \[BQ//SA\left( {Q \in GM} \right)\] mà B là trung điểm của SG nên QB là đường trung bình của ∆GSM

Suy ra \[\frac = \frac{1}{2} \Rightarrow \frac = \frac{1}{2}\] (do \[SM = MA\])

Vì \[QB//AM\], theo định lét Ta-let ta có \[\frac = \frac = \frac{1}{2} \Rightarrow \frac = 2\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×