Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi G là trọng tâm của tam giác ABC, N là trung điểm của AC.
Suy ra ba điểm B, G, N thẳng hàng.
Dựng hình bình hành ABCD.
Khi đó trung điểm N của AC cũng là trung điểm của đoạn BD.
Ta có \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\)
\( = \left| {3\overrightarrow {MG} } \right| + 3\left| {\overrightarrow {BA} + \overrightarrow {MC} } \right|\)
\( = 3MG + 3\left| {\overrightarrow {CD} + \overrightarrow {MC} } \right|\)
\( = 3MG + 3\left| {\overrightarrow {MD} } \right|\)
= 3(MG + MD) ≥ 3GD (theo bất đẳng thức tam giác).
Dấu “=” xảy ra ⇔ M là giao điểm của GD và AC hay M là trung điểm của AC.
Khi đó M trùng N.
Vì tam giác ABC đều nên đường trung tuyến BN cũng là đường cao của tam giác ABC.
Tam giác ABN vuông tại N: \(BN = \sqrt {A{B^2} - A{N^2}} = \sqrt {A{B^2} - \frac{{A{C^2}}}{4}} = \sqrt {{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\).
Khi đó \(GN = \frac{1}{3}BN = \frac{{a\sqrt 3 }}{6}\) và \(ND = BN = \frac{{a\sqrt 3 }}{2}\).
Vì vậy \(3GD = 3\left( {GN + ND} \right) = 3\left( {\frac{{a\sqrt 3 }}{6} + \frac{{a\sqrt 3 }}{2}} \right) = 2a\sqrt 3 \).
Vậy \({T_{\min }} = 2a\sqrt 3 \) khi M là trung điểm của AC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |