Cho tam giác ABC vuông tại A (AB < AC). Gọi E là trung điểm của BC. Từ E lần lượt kẻ ED vuông góc AC tại D, EF vuông góc với AB tại F.
a) Chứng minh tứ giác ADEF là hình chữ nhật.
b) Gọi K là điểm đối xứng của E qua F. Chứng minh tứ giác AEBK là hình thoi.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
Xét tứ giác ADEF
\(\begin{array}{l}\widehat A = 90^\circ \\\widehat {ADE} = 90^\circ \\\widehat {EFA} = 90^\circ \end{array}\)
Do đó, ADEF là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật).
b)
Xét tam giác CBA có:
E là trung điểm của BC (gt)
EF song song với CA (do EF song song với AD, C thuộc DA)
Do đó, F là trung điểm của AB (định lý về đường trung bình của tam giác)
Xét tứ giác AEBF có
F là trung điểm của đường chéo AB(cmt)
F là trung điểm của đường chéo EK(do E và K đối xứng nhau qua F)
Do đó: AEBF là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà EK vuông góc với AB (do EF vuông góc với AB, K thuộc EF)
nên AEBF là hình thoi(dấu hiệu nhận biết hình thoi).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |