Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn (O; R) đường kính AB. Bán kính OC vuông góc với AB. Gọi d là tiếp tuyến tại A của nửa đường tròn (O). Qua điểm M bất kì thuộc nửa đường tròn (O), kẻ tiếp tuyến với đường tròn cắt d tại E và cắt đường thẳng OC tại D. Gọi F là giao điểm của BD và d. Tiếp tuyến tại B cắt ED tại K. Chứng minh BK = EF.

Cho nửa đường tròn (O; R) đường kính AB. Bán kính OC vuông góc với AB. Gọi d là tiếp tuyến tại A của nửa đường tròn (O). Qua điểm M bất kì thuộc nửa đường tròn (O), kẻ tiếp tuyến với đường tròn cắt d tại E và cắt đường thẳng OC tại D. Gọi F là giao điểm của BD và d. Tiếp tuyến tại B cắt ED tại K. Chứng minh BK = EF.

1 trả lời
Hỏi chi tiết
18
0
0
Phạm Văn Bắc
13/09 23:00:25

Kẻ DD’ ⊥ d (D’ ∈ d)

Ta có: OC // d (do cùng vuông góc với AB)

⇒ \(\widehat {DFD'} = \widehat {BDO}\)

Xét \(\Delta D'DF\) và \(\Delta OBD\) có:

\(\widehat {FD'D} = \widehat {DOB}\left( { = 90^\circ } \right)\)

D’D = OB \(\left( { = \frac{1}{2}AB} \right)\)

\(\widehat {DFD'} = \widehat {BDO}\)

⇒ \(\Delta D'DF = \Delta OBD\left( {g.c.g} \right)\)

⇒ DB = DF (2 cạnh tương ứng)

Xét \(\Delta DKB\) và \(\Delta DEF\) có:

\(\widehat {KDB} = \widehat {EDF}\)(đối đỉnh)

DB = DF (cmt)

\(\widehat {KBD} = \widehat {EFD}\) (góc so le trong do BK // d)

Do đó \(\Delta DKB = \Delta DEF\left( {g.c.g} \right)\)

⇒ BK = EF (2 cạnh tương ứng)(đpcm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k