Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. a) Chứng minh rằng GK // (ABCD). b) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD.

a) Chứng minh rằng GK // (ABCD).

b) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.

1 Xem trả lời
Hỏi chi tiết
42
0
0
Trần Đan Phương
13/09/2024 23:29:44

Lời giải:

a) Gọi H, I lần lượt là trung điểm của AD và CD.

Vì G, K lần lượt là trọng tâm của các tam giác SAD, SCD nên theo tính chất trọng tâm trong tam giác ta có S, G, H thẳng hàng, S, K, I thẳng hàng và \(\frac = \frac{1}{3};\,\,\frac = \frac{1}{3}\).

Xét tam giác SHI có \(\frac = \frac\left( { = \frac{1}{3}} \right)\), suy ra GK // HI (định lí Thalés).

Vì H thuộc AD nên H thuộc mặt phẳng (ABCD), vì I thuộc CD nên I thuộc mặt phẳng (ABCD). Do đó, mặt phẳng (ABCD) chứa đường thẳng HI.

Đường thẳng GK song song với đường thẳng HI và đường thẳng HI nằm trong mặt phẳng (ABCD) nên GK // (ABCD).

b) Trong mặt phẳng (SAD), từ G kẻ đường thẳng song song với AD, cắt SA, SD lần lượt tại M và F, suy ra MF // AD nên MF // (ABCD).

Trong mặt phẳng (SCD), nối F với K, đường thẳng FK cắt SC tại E.

Trong mặt phẳng (SBC), từ E kẻ đường thẳng song song với BC, cắt SB tại N.

Xét tam giác SHD có GF // HD (do MF // AD), theo định lí Thalés suy ra \(\frac = \frac = \frac{1}{3}\).

Xét tam giác SDI có \(\frac = \frac\left( { = \frac{1}{3}} \right)\), do đó FK // DI hay EF // DC, suy ra EF // (ABCD).

Vì MF // CD, NE // BC, AD // BC nên MF // NE, suy ra bốn điểm M, N, E, F đồng phẳng.

Mặt phẳng (MNEF) chứa hai đường thẳng cắt nhau MF và EF cùng song song với mặt phẳng (ABCD). Do đó, hai mặt phẳng (MNEF) và (ABCD) song song với nhau.

Vì G thuộc MF nên G thuộc mặt phẳng (MNEF), vì K thuộc EF nên K thuộc mặt phẳng (MNEF).

Vậy mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F là mặt phẳng (MNEF).

Xét tam giác SAD có MF // AD nên \(\frac = \frac = \frac{1}{3}\).

Xét tam giác SCD có EF // CD nên \(\frac = \frac = \frac{1}{3}\).

Xét tam giác SBC có NE // BC nên \(\frac = \frac = \frac{1}{3}\).

Do đó, \(\frac = \frac\left( { = \frac{1}{3}} \right)\), mà AD = BC (do ABCD là hình bình hành) nên MF = NE.

Xét tứ giác MNEF có MF = NE và MF // NE nên tứ giác MNEF là hình bình hành.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×