Bài tập  /  Bài đang cần trả lời

Cho dãy số (u) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\). a) Biểu diễn năm số hạng đầu của dãy số này trên trục số. b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?

Cho dãy số (u) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\).

a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.

b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?

1 trả lời
Hỏi chi tiết
38
0
0
Trần Bảo Ngọc
13/09 23:29:27

Lời giải:

a) Năm số hạng đầu của dãy số (un) đã cho là \({u_1} = \frac{{{{\left( { - 1} \right)}^1}}}{1} = - 1\); \({u_2} = \frac{{{{\left( { - 1} \right)}^2}}}{2} = \frac{1}{2}\); \({u_3} = \frac{{{{\left( { - 1} \right)}^3}}}{3} = - \frac{1}{3}\); \({u_4} = \frac{{{{\left( { - 1} \right)}^4}}}{4} = \frac{1}{4}\); \({u_5} = \frac{{{{\left( { - 1} \right)}^5}}}{5} = - \frac{1}{5}\).

Biểu diễn các số hạng này trên trục số, ta được:

b) Khoảng cách từ un đến 0 là \(\left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| = \frac{{{1^n}}}{n} = \frac{1}{n},\,\,\forall n \in {\mathbb{N}^*}\).

Ta có: \(\frac{1}{n} < 0,01\)\( \Leftrightarrow \frac{1}{n} < \frac{1} \Leftrightarrow n > 100\).

Vậy bắt đầu từ số hạng thứ 101 của dãy thì khoảng cách từ un đến 0 nhỏ hơn 0,01.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư