Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x – y + 3 = 0 và đường tròn (C): (x + 1)2 + (y + 2)2 = 9.
a) Tìm ảnh của đường thẳng d qua ĐOy.
b) Tìm ảnh của đường tròn (C) qua ĐOx.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Trục Oy: x = 0.
Thế x = 0 vào phương trình d, ta được 0 – y + 3 = 0 ⇔ y = 3.
Suy ra giao điểm của d và Oy là P(0; 3).
Chọn điểm M(1; 4) ∈ d: x – y + 3 = 0
Ta đặt M’ = ĐOy(M).
Suy ra Oy là đường trung trực của MM’ hay M’ là điểm đối xứng với M qua Oy.
Do đó hai điểm M và M’ có cùng tung độ và có hoành độ đối nhau.
Vì vậy tọa độ điểm M’(–1; 4).
Ta có M'P→=1;−1.
Gọi d’ là ảnh của d qua ĐOy.
Đường thẳng d’ có vectơ chỉ phương M'P→=1;−1.
Suy ra d’ có vectơ pháp tuyến n→d'=1;1.
Vậy đường thẳng d’ đi qua P(0; 3) và có vectơ pháp tuyến n→d'=1;1 nên phương trình d’ là: 1.(x – 0) + 1.(y – 3) = 0 hay x + y – 3 = 0.
b) Đường tròn (C) có tâm I(–1; –2), bán kính R = 3.
Ta đặt I’ = ĐOx(I).
Suy ra Ox là đường trung trực của II’ hay I’ đối xứng với I qua Ox
Do đó hai điểm I và I’ có cùng hoành độ và có tung độ đối nhau.
Vì vậy tọa độ điểm I’(–1; 2).
Gọi (C’) là ảnh của đường tròn (C) qua ĐOx.
Suy ra (C’) có tâm I’(–1; 2), bán kính R’ = R = 3.
Vậy phương trình đường tròn (C’): (x + 1)2 + (y – 2)2 = 9.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |