Bài tập  /  Bài đang cần trả lời

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không trùng các đỉnh B, C, D). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì PQ song song với BD.

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không trùng các đỉnh B, C, D). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì PQ song song với BD.

1 trả lời
Hỏi chi tiết
6
0
0
Phạm Văn Phú
14/09 01:10:36

Giả sử M, N, P, Q cùng thuộc một mặt phẳng.

Vì M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác ABD, do đó MN // BD.

Do P ∈ CD nên P ∈ (BCD) và Q ∈ BC nên Q ∈ (BCD), suy ra PQ ⊂ (BCD).

Mà PQ ⊂ (MNPQ) nên PQ là giao tuyến của hai mặt phẳng (BCD) và (MNPQ).

Hai mặt phẳng (MNPQ) và (BCD) có MN // BD và PQ là giao tuyến.

Suy ra PQ // BD.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k