Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không trùng các đỉnh B, C, D). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì PQ song song với BD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử M, N, P, Q cùng thuộc một mặt phẳng.
Vì M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác ABD, do đó MN // BD.
Do P ∈ CD nên P ∈ (BCD) và Q ∈ BC nên Q ∈ (BCD), suy ra PQ ⊂ (BCD).
Mà PQ ⊂ (MNPQ) nên PQ là giao tuyến của hai mặt phẳng (BCD) và (MNPQ).
Hai mặt phẳng (MNPQ) và (BCD) có MN // BD và PQ là giao tuyến.
Suy ra PQ // BD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |