Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được trước đó. Gọi hn là độ cao quả bóng đạt được ở lần nảy thứ n.
Tính giới hạn của dãy số (hn) và nêu ý nghĩa giới hạn của dãy số (hn).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: limhn = \(\lim \frac{{{4^n}}} = \lim \left( {100.\frac{1}{{{4^n}}}} \right) = \lim 100.\lim {\left( {\frac{1}{4}} \right)^n} = 100.0 = 0\).
Từ giới hạn đó, ta rút ra được ý nghĩa: Khi n càng dần tới vô cực thì độ cao của quả bóng đạt được sau khi nảy ngày càng nhỏ và độ cao đó dần tới 0.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |