Cho hàm số y = \(\frac{{{x^2} + 2x - m}}\) (m là tham số).
a) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị.
b) Chứng tỏ rằng khi m = 2, hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) y = \(\frac{{{x^2} + 2x - m}}\)
Tập xác định: D = ℝ\{1}.
Ta có: y' = \(\frac{{{x^2} - 2x + m - 2}}{{{{\left( {x - 1} \right)}^2}}}\)
a) Đồ thị hàm số đã cho có hai cực trị khi và chỉ khi phương trình y' = 0 có hai nghiệm phân biệt.
⇔ x2 – 2x + m – 2 = 0 có hai nghiệm phân biệt.
⇔ ∆' > 0 ⇔ 3 – m > 0 ⇔ m < 3.
Đồ thị hàm số đã cho có hai cực trị khi m < 3.
b) Nhận thấy m = 2 thỏa mãn điều kiện m < 3 nên khi đó hàm số có hai cực trị.
Với m = 2, ta có: y = \(\frac{{{x^2} + 2x - 2}}\) và y' = \(\frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\).
Phương trình y' = 0 ⇔ \(\frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\) = 0 ⇔ x = 0 hoặc x = 2.
Với x = 0 thì y = 2, với x = 2 thì y = 6.
Phương trình đường thẳng đi qua hai điểm cực trị có dạng y = ax + b.
Giải hệ phương trình, ta có: \(\left\{ \begin{array}{l}a.0 + b = 2\\a.2 + b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 2\end{array} \right.\).
Vậy y = 2x + 2.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |