Một bình chứa nước dạng như Hình 13 có chiều cao là \[\frac{{3\pi }}{2}\] dm. Nếu lượng nước trong bình có chiều cao là x (dm) thì mặt nước là hình tròn có bán kính \[\sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} \] (dm) với 0 ≤ x ≤ \[\frac{{3\pi }}{2}\]. Tính dung tích của hình (kết quả làm tròn đến hàng phần trăm của đềximét khối).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Diện tích mặt nước hình tròn bán kính \[R = \sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} \] (dm) là:
\[S\left( x \right) = \pi {R^2} = \pi {\left( {\sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} } \right)^2} = \pi .\left( {2 - \sin {\rm{x}}} \right)\] (dm2).
Dung tích của bình là:
\[V = \int\limits_0^{\frac{{3\pi }}{2}} {S\left( x \right)dx = } \int\limits_0^{\frac{{3\pi }}{2}} {\pi \left( {2 - \sin x} \right)dx} \]
\[ = \left. {\pi \left( {2x + \cos x} \right)} \right|_0^{\frac{{3\pi }}{2}}\]
\[ = \pi \left( {3\pi - 1} \right) \approx 26,47\] (dm3).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |