|x–1|+|x–3|+|x–5|+|x–7|=8 ----- Nội dung ảnh ----- ``` a, |x–1|+|x–3|+|x–5|+|x–7|=8 b, |x–2010|+|x–2012|+|x–2014|=2 Bài 2: Tìm x nguyên biết: |x–1|+|x–2|+|x–3|+...+|x–100|=2500 Bài 3: Tìm x, y nguyên biết: a, |x–1|+|y–3|+|x–4|=3 Bài 4: Tìm x nguyên biết: 2004 = |x–4|+|x–10|+|x–101|+|x–99d|+|x–100| Bài 5: Tìm x nguyên biết: |x–2005|+|x–2006|+|y–2007|+|y–2008|=3 Bài 6: Tìm x biết: [2x–3]+[2x+4]=7 Bài 7: Tìm x biết: |x–2.5|+|x–6.5|+|x–9.5|=7 Bài 8: Tìm x nguyên biết: |x+1|+|x+2|+|x+3|+...+|x+100|=605x Bài 10: Tìm x biết |x+1|+|x+2|+...+|x+2019|=2020x. Bài 11: Tìm x biết: \frac{11}{17} + \frac{2}{17} + \frac{4}{17} = 4x Bài 12:Tìm x biết: a, |x+0|+|x+5|+2|+|x+9.7|=4x Bài 13: Tìm x biết: a, |x–2|+|x–3|+|2x–8|=9 b, |x–1|+|3x–2|–|x–2|=4 Bài 14: Tìm x biết: a, |x+1|+|x+2|+|x+3|=4x b, |x+1|+|x+2|+|x+1|+|x+1|=5x–1 Bài 15: Tìm x biết: a, |x+2|+|x–3|+|x–2|=4x b, |x+1|+|x+1|+|x+1|+|x+2|+|x–1|=4x. Bài 16: Tìm x biết: a, |x+2|+ \frac{3}{5} + \frac{1}{2} = 4x b, |x+1|+ \frac{3}{101} + \frac{1}{101} + \frac{100}{101} = 101x Bài 17: Tìm x biết: \frac{1}{1.2} + \frac{2}{2.3} + \frac{3}{3.4} + ... + \frac{1}{99.100} = 100x ```
0 trả lời
43 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation \( |x-1| + |x-3| + |x-5| + |x-7| = 8 \), we need to analyze it based on the critical points given by the absolute values, which are \( x = 1, 3, 5, 7 \). We will consider different intervals determined by these points: 1. **Interval \( (-\infty, 1) \)**: - Here, all absolute values are negative. - The equation becomes: \[ -(x-1) - (x-3) - (x-5) - (x-7) = 8 \] - Simplifying gives: \[ -4x + 16 = 8 \implies -4x = -8 \implies x = 2 \] - Since \( 2 \) is not in this interval, there are no solutions here. 2. **Interval \( [1, 3) \)**: - Here, \( |x-1| = x-1 \) and the others are still negative. - The equation becomes: \[ (x-1) - (x-3) - (x-5) - (x-7) = 8 \] - Simplifying gives: \[ -2x + 6 = 8 \implies -2x = 2 \implies x = -1 \] - This is not in the interval, so no solutions here. 3. **Interval \( [3, 5) \)**: - Here, \( |x-1| = x-1\), \( |x-3| = x-3\), and the others are negative. - The equation becomes: \[ (x-1) + (x-3) - (x-5) - (x-7) = 8 \] - Simplifying gives: \[ 2x - 8 = 8 \implies 2x = 16 \implies x = 8 \] - This is not in the interval, so no solutions here. 4. **Interval \( [5, 7) \)**: - Here, \( |x-1| = x-1\), \( |x-3| = x-3\), \( |x-5| = x-5\), and the last is negative. - The equation becomes: \[ (x-1) + (x-3) + (x-5) - (x-7) = 8 \] - Simplifying gives: \[ 3x - 14 = 8 \implies 3x = 22 \implies x = \frac{22}{3} \approx 7.33 \] - This is not in the interval, so no solutions here. 5. **Interval \( [7, \infty) \)**: - Here, all absolute values are positive. - The equation becomes: \[ (x-1) + (x-3) + (x-5) + (x-7) = 8 \] - Simplifying gives: \[ 4x - 16 = 8 \implies 4x = 24 \implies x = 6 \] - This does not satisfy \( x \geq 7\), so no solutions here. After examining all intervals, we find that there are no \( x \) values that satisfy the original equation. Thus, the solution to the equation \( |x-1| + |x-3| + |x-5| + |x-7| = 8 \) is: **No solutions.**