Cho tứ giác \(ABCD\) có \(\alpha \) là góc nhọn tạo bởi hai đường chéo, chứng minh rằng:
\({S_{ABCD}} = \frac{1}{2}AC \cdot BD \cdot \sin \alpha .\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \(E\) là giao điểm của hai đường chéo \(AC\) và \(BD.\) Kẻ đường cao \(AH\) xuống \(BD\) và đường cao \(DK\) xuống \(AC\).
Xét \(\Delta AEH\) vuông tại \(H\) có: \(AH = AE.\sin \alpha .\)
Do đó \({S_{ADE}} = \frac{1}{2}DE \cdot AH = \frac{1}{2}DE \cdot AE \cdot \sin \alpha .\)
Ta có: \(\frac{{{S_{ADE}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}DK \cdot AE}}{{\frac{1}{2}DK \cdot AC}} = \frac\)
Suy ra \({S_{ADC}} = \frac \cdot {S_{ADE}} = \frac \cdot \frac{1}{2}DE \cdot AE \cdot \sin \alpha = \frac{1}{2}DE \cdot AC \cdot \sin \alpha .\)
Tương tự, ta có: \({S_{ABC}} = \frac{1}{2}BE \cdot AC \cdot \sin \alpha \)
Khi đó: \({S_{ABCD}} = {S_{ADC}} + {S_{ABC}} = \frac{1}{2}DE \cdot AC \cdot \sin \alpha + \frac{1}{2}BE \cdot AC \cdot \sin \alpha \)
\( = \frac{1}{2}AC \cdot \left( {DE + BE} \right) \cdot \sin \alpha = \frac{1}{2}AC \cdot BD \cdot \sin \alpha \).
Vậy \({S_{ABCD}} = \frac{1}{2}AC \cdot BD \cdot \sin \alpha .\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |