PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số xác định trên và có bảng biến thiên như sau:
a) Hàm số đồng biến trên mỗi khoảng và .
b) Số điểm cực trị của hàm số đã cho là .
c) Hàm số có giá trị nhỏ nhất bằng .
d) Đồ thị hàm số không có đường tiệm cận.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) S, b) Đ, c) Đ, d) Đ.
Hướng dẫn giải
– Quan sát bảng biến thiên, ta thấy hàm số đã cho đồng biến trên mỗi khoảng \[\left( {0;1} \right)\] và \(\left( {3;\, + \infty } \right)\), do đó ý a) sai.
– Ta có \(f'\left( x \right)\) đổi dấu từ “–” sang “+” tại các điểm \(x = 0\), \(x = 3\) và đổi dấu từ “+” sang “–” tại điểm \(x = 1\). Vậy hàm số \(y = f\left( x \right)\) có 3 điểm cực trị nên ý b) đúng.
– Hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng \(0\) tại \(x = 0\) và \(x = 3\) nên ý c) đúng.
– Hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và \(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = + \infty \) nên đồ thị hàm số này không có đường tiệm cận. Vậy ý d) đúng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |