Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation \( \cos^2 x - \sin^2 x = -1 \), we can use the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \). Starting from the given equation, we can rewrite \( \cos^2 x - \sin^2 x \) as: \[ \cos^2 x - \sin^2 x = -1 \] This can be rewritten by rearranging terms: \[ \cos^2 x - \sin^2 x + 1 = 0 \] Now, notice that we can express \( \cos^2 x \) in terms of \( \sin^2 x \) using the Pythagorean identity. Let’s denote \( \sin^2 x = y \). Thus, \( \cos^2 x = 1 - y \). Now substituting this into the equation gives: \[ (1 - y) - y + 1 = 0 \] Simplifying this: \[ 1 - y - y + 1 = 0 \implies 2 - 2y = 0 \implies 2y = 2 \implies y = 1 \] Since we defined \( y = \sin^2 x \), we have \( \sin^2 x = 1 \). Taking the square root gives: \[ \sin x = \pm 1 \] The sine function equals 1 at: \[ x = \frac{\pi}{2} + 2k\pi \quad \text{(for } k \in \mathbb{Z}\text{)} \] The sine function equals -1 at: \[ x = \frac{3\pi}{2} + 2k\pi \quad \text{(for } k \in \mathbb{Z}\text{)} \] Therefore, the complete set of solutions for the equation \( \cos^2 x - \sin^2 x = -1 \) is: \[ x = \frac{\pi}{2} + 2k\pi \quad \text{and} \quad x = \frac{3\pi}{2} + 2k\pi \quad \text{(for } k \in \mathbb{Z}\text{)} \]