Cho phương trình \(2\sin \left( {x - \frac{\pi }} \right) + \sqrt 3 = 0\).
a) Phương trình đã cho tương đương với phương trình \(\sin \left( {x - \frac{\pi }} \right) = \sin \left( {\frac{\pi }{3}} \right)\).
b) Phương trình đã cho có nghiệm là: \(x = \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{7\pi }} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Phương trình đã cho có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).
d) Số nghiệm của phương trình đã cho trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(2\sin \left( {x - \frac{\pi }} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi } = - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi } = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).
Vậy phương trình có nghiệm là: \[x = - \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{17\pi }} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).
Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.
Đáp án: a) Sai, b) Sai, c) Đúng, d) Đúng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |