Cho phương trình \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1\) (*).
a) Điều kiện xác định của phương trình: \(x > 1\).
b) Phương trình (*) có chung tập nghiệm với phương trình \(\frac{{{x^2} - 11x + 9}} = 0\).
c) Gọi \(x = a\) là nghiệm của phương trình (*), khi đó \(\mathop {\lim }\limits_{x \to a} \left( {x - 3} \right) = \frac{5}{2}\).
d) Nghiệm của phương trình (*) là hoành độ giao điểm của đường thẳng \({d_1}:2x - y - 8 = 0\) với đường thẳng \({d_2}:y = 0\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x + 6 > 0}\\{x - 1 > 0}\end{array} \Leftrightarrow x > 1} \right.\).
Ta có \({\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + 1 \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}\left( {x - 1} \right) + {\log _3}3\)
\[ \Leftrightarrow {\log _3}\left( {x + 6} \right) = {\log _3}3\left( {x - 1} \right) \Rightarrow x + 6 = 3\left( {x - 1} \right) \Leftrightarrow x = \frac{9}{2}\] (thoả mãn điều kiện).
Vậy phương trình (*) có nghiệm là \(x = \frac{9}{2}\).
Giải phương trình: \(\frac{{{x^2} - 11x + 9}} = 0\) ta được tập nghiệm là \(S = \left\{ {\frac{2}} \right\}\).
Ta có \(\mathop {\lim }\limits_{x \to \frac{9}{2}} \left( {x - 3} \right) = \frac{9}{2} - 3 = \frac{3}{2} \ne \frac{5}{2}\).
Ta có \({d_1}:2x - y - 8 = 0 \Leftrightarrow y = 2x - 8\).
Phương trình hoành độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là: \(2x - 8 = 0\)\( \Leftrightarrow x = 4\).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |