Cho tam giác BFC cân tại B .Kẻ FE ⊥ BC tại E , CA ⊥ BF tại A .
a) Chứng minh ΔBFC = ΔBAC
b) FE cắt CA tại D . Chứng minh BD là tia phân giác của góc ABC
c) Gọi M là trung điểm FC . Chứng minh BM ⊥ AE
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét hai tam giác vuông ΔBEFΔBEF và ΔBACΔBAC có:
BF=BCBF=BC (do ΔBFCΔBFC cân đỉnh B)
ˆBB^ chung
⇒ΔBEF=ΔBAC⇒ΔBEF=ΔBAC (cạnh huyền-góc nhọn).
b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCAΔBEF=ΔBAC⇒BFE^=BCA^ (hai tương ứng)
Mà ΔBFCΔBFC cân đỉnh BB nên: ˆBFC=ˆBCFBFC^=BCF^
ˆBFC−ˆBFE=ˆBCF−ˆBCABFC^−BFE^=BCF^−BCA^
⇒ˆEFC=ˆACF⇒EFC^=ACF^ hay ˆDFC=ˆDCF⇒ΔDFCDFC^=DCF^⇒ΔDFC cân đỉnh D⇒DF=DCD⇒DF=DC
Xét ΔBFDΔBFD và ΔBCDΔBCD có:
BF=BCBF=BC (giả thiết)
BDBD chung
DF=DCDF=DC (cmt)
⇒ΔBFD=ΔBCD⇒ΔBFD=ΔBCD (c.c.c)
⇒ˆFBD=ˆCBD⇒FBD^=CBD^ (hai góc tương ứng)
⇒BD⇒BD là phân giác ˆFBCFBC^.
c) ΔBEF=ΔBAC⇒BE=BAΔBEF=ΔBAC⇒BE=BA
⇒BF−BA=BC−BE⇒BF−BA=BC−BE hay AF=ECAF=EC
Xét ΔAFMΔAFM và ΔECMΔECM có:
FM=CMFM=CM (do M là trung điểm cạnh FC)
ˆAFM=ˆECMAFM^=ECM^ (giả thiết)
AF=ECAF=EC (cmt)
⇒ΔAFM=ΔECM⇒ΔAFM=ΔECM (c.g.c)
⇒MA=ME⇒MA=ME lại có BA=BE⇒MBBA=BE⇒MB là trung trực của AEAE
⇒MB⊥AE⇒MB⊥AE.
Đây nha -)))
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |