Bài tập  /  Bài đang cần trả lời

Hãy biện luận theo b số nghiệm của các phương trình x3 = b và x4 = b

Dựa vào đồ thị của các hàm số y = x3 và y = x4 (H.26, H.27), hãy biện luận theo b số nghiệm của các phương trình x3 = b và x4 = b.

2 Xem trả lời
Hỏi chi tiết
180
1
1
Simple love
30/04/2020 19:45:20

Số nghiệm của phương trình x3 = b là số giao điểm của hai đồ thị hàm số y = b và y = x3.

Dựa vào H26 ta có đồ thị hàm số y = x3 luôn cắt đường thẳng y = b tại một điểm duy nhất với mọi b nên phương trình x3 = b luôn có nghiệm duy nhất với mọi b.

Số nghiệm của phương trình x4 = b (1) là số giao điểm của hai đồ thị hàm số y = b và y = x4. Dựa và hình 27 ta có:

+ Với b < 0 hai đồ thị hàm số trên không giao nhau, vậy phương trình (1) vô nghiệm.

+ Với b = 0, hai đồ thị hàm số tiếp xúc nhau tại (0,0), vậy phương trình (1) có nghiệm duy nhất x = 0.

+ Với b > 0, hai đồ thị hàm số cắt nhau tại hai điểm phân biết, vậy phương trình (1) có hai nghiệm phân biệt.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Hiếu Giải Bài Tập
30/04/2020 20:51:51

Số nghiệm của phương trình x3 = b là số giao điểm của hai đồ thị hàm số y = b và y = x3.

Dựa vào H26 ta có đồ thị hàm số y = x3 luôn cắt đường thẳng y = b tại một điểm duy nhất với mọi b nên phương trình x3 = b luôn có nghiệm duy nhất với mọi b.

Số nghiệm của phương trình x4 = b (1) là số giao điểm của hai đồ thị hàm số y = b và y = x4. Dựa và hình 27 ta có:

+ Với b < 0 hai đồ thị hàm số trên không giao nhau, vậy phương trình (1) vô nghiệm.

+ Với b = 0, hai đồ thị hàm số tiếp xúc nhau tại (0,0), vậy phương trình (1) có nghiệm duy nhất x = 0.

+ Với b > 0, hai đồ thị hàm số cắt nhau tại hai điểm phân biết, vậy phương trình (1) có hai nghiệm phân biệt.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×